Experimental investigation of convective heat transfer performance and hydrodynamics of pulsating flow through the rectangular grooved channel

dc.authoridhttps://orcid.org/0000-0001-5142-3116
dc.authoridhttps://orcid.org/0000-0003-0671-0890
dc.authorscopusid57211920817
dc.authorscopusid7103170408
dc.authorwosidHHN-9054-2022
dc.authorwosidA-1445-2016
dc.contributor.authorZontul, Harun
dc.contributor.authorŞahin, Besir
dc.date.accessioned2023-10-30T10:53:48Z
dc.date.available2023-10-30T10:53:48Z
dc.date.issued2023
dc.departmentFakülteler, Havacılık ve Uzay Bilimleri Fakültesi, Havacılık ve Uzay Mühendisliği Bölümü
dc.description.abstractThis study presents hydrodynamics and heat transfer of steady and pulsating flow in a rectangular grooved channel for the Reynolds number and pulsation frequency ranges of 2x103 ? Re ? 6.5x103 and 0 ? F ? 5 (Hz) respectively. The Particle Image Velocimetry (PIV) method is employed for hydrodynamic investigation. Streamlines, velocity vectors, and vorticity contours are drawn to reveal massive flow motions and flow patterns. Flow pulsation significantly empowers the penetration of mainstream into the groove section; however, pulsation frequency has an important effect on this phenomenon. Moreover, Reynolds stress and root mean square of the fluctuations are presented to document turbulence statistics. In the heat transfer experiments, the positive effects of the improvement of the groove mainstream interaction and an increase in the mixing are observed. Heat transfer enhancement and pressure drop trade-off are considered by calculating the thermal performance factor. Pulsating flow remarkably augments the heat transfer from the grooved channel. However, the enhancement ability of the pulsating flow strongly depends on its frequency, F, and the value of the Reynolds number. Pulsating flow is a more effective method in low Reynolds numbers.
dc.identifier.citationZontul, H. ve Şahin, B. (2023). Experimental investigation of convective heat transfer performance and hydrodynamics of pulsating flow through the rectangular grooved channel, Experimental Thermal and Fluid Science,141.
dc.identifier.doi10.1016/j.expthermflusci.2022.110796
dc.identifier.endpage21en_US
dc.identifier.issn1879-2286
dc.identifier.scopus2-s2.0-85141999099
dc.identifier.scopusqualityQ1
dc.identifier.startpage1en_US
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0894177722001923
dc.identifier.urihttps://hdl.handle.net/20.500.13099/181
dc.identifier.volume141en_US
dc.identifier.wosWOS:000892302500001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorZontul, Harun
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofExperimental Thermal and Fluid Science
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectHeat transfer
dc.subjectGrooved channel
dc.subjectPIV
dc.subjectPulsating flow
dc.subjectEconomic and social effects
dc.subjectHeat convection
dc.subjectHeat transfer coefficients
dc.subjectReynolds number
dc.subjectVelocity measurement
dc.subjectConvective heat transfer
dc.subjectExperimental investigations
dc.subjectGrooved channel
dc.subjectHeat transfer performance
dc.subjectImage velocimetry
dc.subjectParticle image velocimetry
dc.subjectParticle images
dc.subjectPulsating flow
dc.subjectPulsation frequency
dc.subjectReynold number
dc.subjectHydrodynamics
dc.subjecttransfer enhancementnumerical
dc.titleExperimental investigation of convective heat transfer performance and hydrodynamics of pulsating flow through the rectangular grooved channel
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
zontul.png
Boyut:
173.36 KB
Biçim:
Portable Network Graphics
Açıklama:
Makale Dosyası
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: