Enhancement of direct electron transfer in graphene bioelectrodes containing novel cytochrome c553 variants with optimized heme orientation

[ X ]

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Science Sa

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

The highly efficient bioelectrodes based on single layer graphene (SLG) functionalized with pyrene self-assembled monolayer and novel cytochrome c(553) (cyt c(553)) peptide linker variants were rationally designed to optimize the direct electron transfer (DET) between SLG and the heme group of cyt. Through a combination of photoelectrochemical and quantum mechanical (QM/MM) approaches we show that the specific amino acid sequence of a short peptide genetically inserted between the cyt c(553) - holoprotein and the surface anchoring C-terminal His s -tag plays a crucial role in ensuring the optimal orientation and distance of the heme group with respect to the SLG surface. Consequently, efficient DET occurring between graphene and cyt c(553) leads to a 20-fold enhancement of the cathodic photocurrent output compared to the previously reported devices of a similar type. The QM/MM modeling implies that a perpendicular or parallel orientation of the heme group with respect to the SLG surface is detrimental to DET, whereas the tilted orientation favors the cathodic photocurrent generation. Our work confirms the possibility of fine-tuning the electronic communication within complex bio-organic nanoarchitectures and interfaces due to optimization of the tilt angle of the heme group, its distance from the SLG surface and optimal HOMO/LUMO levels of the interacting redox centers. (C) 2021 The Authors. Published by Elsevier B.V.

Açıklama

Anahtar Kelimeler

Biohybrid nanodevices, Direct electron transfer, Cytochrome c, Single layer graphene, Quantum mechanics/molecular mechanics

Kaynak

Bioelectrochemistry

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

140

Sayı

Künye