Architecture design of TiO2 with Co-doped CdS quantum dots photoelectrode for water splitting

dc.authoridtezcan, fatih/0000-0001-7656-3529
dc.authoridKardas, Gulfeza/0000-0002-7871-6303
dc.contributor.authorTezcan, Fatih
dc.contributor.authorAhmad, Abrar
dc.contributor.authorKardas, Gulfeza
dc.date.accessioned2025-03-17T12:25:10Z
dc.date.available2025-03-17T12:25:10Z
dc.date.issued2023
dc.departmentTarsus Üniversitesi
dc.description.abstractPhotoelectrochemical hydrogen production is a critical key to solving the carbon-zero goal of countries due to renewable sources of solar light and combustion products of hydrogen-only water. Here, an architecture design for an n-type nano rosettes-rod TiO2 (RT) surface using CdS and Co-doped CdS quantum dots (QDs) is carried out utilizing the SILAR (simple ionic layer adsorption and reaction) method. Furthermore, the photocatalytic behaviour of Co-doped CdS QDs SILAR cycles deposition is investigated in various cycles, including 5, 8, 10, and 12. The FESEM, Raman XRD, Uv-Vis spectrometer, and vibration modes are used to evaluate the photoelectrode surface structure, crystal structure, and solar light absorption, respectively. FESEM images and XRD pattern revealed successive CdS QDS and Co-doped CdS QDs deposition on the RT boundary and rising SILAR cycles of Co-doped CdS QDs lead to further coverage of RT surface. UV-vis spectrometer indicated shifting solar light absorption to the visible region by applying more SILAR cycles of Co-doped CdS QDs deposition. The electrochemical parameters obtained from EIS showed total polarization resistance (Rp) of the RT electrode dramatically decreased with 10 SILAR cycle Co-doped CdS QDs deposition (5093 1 cm2 and 617 1 cm2). Linear sweep voltammetry (LSV) and chronoamperometric photocatalytic performance measurements indicated Co-doped CdS QDs on RT extremely enhanced photoresponse under solar irradiation and 10 SILAR cycle Co-doped CdS QDs improved photocurrent density about fourfold according to blank RT electrode.
dc.description.sponsorshipTurkey's Scientific and Technological Research Council (TUBITAK); Cukurova University's Scientific Research Projects Unit [FBA-2019-12171]
dc.description.sponsorshipThe authors gratefully acknowledge the support of Cukurova University's Scientific Research Projects Unit (FBA-2019-12171) and Turkey's Scientific and Technological Research Council (TUBITAK) 2216 Research Fellowship Program for Foreign Citizens.
dc.identifier.doi10.55730/1300-0527.3604
dc.identifier.endpage1194
dc.identifier.issn1300-0527
dc.identifier.issue5
dc.identifier.pmid38173763
dc.identifier.scopus2-s2.0-85176118034
dc.identifier.scopusqualityQ3
dc.identifier.startpage1183
dc.identifier.trdizinid1208486
dc.identifier.urihttps://doi.org/10.55730/1300-0527.3604
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/1208486
dc.identifier.urihttps://hdl.handle.net/20.500.13099/1512
dc.identifier.volume47
dc.identifier.wosWOS:001099801900023
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakTR-Dizin
dc.indekslendigikaynakPubMed
dc.language.isoen
dc.publisherTubitak Scientific & Technological Research Council Turkey
dc.relation.ispartofTurkish Journal of Chemistry
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WOS_20250316
dc.subjectTiO2
dc.subjecthydrogen production
dc.subjectphotoanode
dc.subjectCdS QDs
dc.titleArchitecture design of TiO2 with Co-doped CdS quantum dots photoelectrode for water splitting
dc.typeArticle

Dosyalar