Development of a Novel Nanoarchitecture of the Robust Photosystem I from a Volcanic Microalga Cyanidioschyzon merolae on Single Layer Graphene for Improved Photocurrent Generation

dc.authoridJacquet, Margot/0000-0002-5842-9761
dc.authoridUnlu, Cumhur Gokhan/0000-0003-2554-5886
dc.authoridGoral, Tomasz/0000-0003-3115-5366
dc.authoridOcakoglu, Kasim/0000-0003-2807-0425
dc.authoridKargul, Joanna/0000-0003-1410-1905
dc.authoridMazur, Radoslaw/0000-0003-3615-1911
dc.authoridIzzo, Miriam/0000-0003-4586-610X
dc.contributor.authorIzzo, Miriam
dc.contributor.authorJacquet, Margot
dc.contributor.authorFujiwara, Takayuki
dc.contributor.authorHarputlu, Ersan
dc.contributor.authorMazur, Radoslaw
dc.contributor.authorWrobel, Piotr
dc.contributor.authorGoral, Tomasz
dc.date.accessioned2025-03-17T12:25:15Z
dc.date.available2025-03-17T12:25:15Z
dc.date.issued2021
dc.departmentTarsus Üniversitesi
dc.description.abstractHere, we report the development of a novel photoactive biomolecular nanoarchitecture based on the genetically engineered extremophilic photosystem I (PSI) biophotocatalyst interfaced with a single layer graphene via pyrene-nitrilotriacetic acid self-assembled monolayer (SAM). For the oriented and stable immobilization of the PSI biophotocatalyst, an His(6)-tag was genetically engineered at the N-terminus of the stromal PsaD subunit of PSI, allowing for the preferential binding of this photoactive complex with its reducing side towards the graphene monolayer. This approach yielded a novel robust and ordered nanoarchitecture designed to generate an efficient direct electron transfer pathway between graphene, the metal redox center in the organic SAM and the photo-oxidized PSI biocatalyst. The nanosystem yielded an overall current output of 16.5 mu A center dot cm(-2) for the nickel- and 17.3 mu A center dot cm(-2) for the cobalt-based nanoassemblies, and was stable for at least 1 h of continuous standard illumination. The novel green nanosystem described in this work carries the high potential for future applications due to its robustness, highly ordered and simple architecture characterized by the high biophotocatalyst loading as well as simplicity of manufacturing.
dc.description.sponsorshipPolish National Science Center [UMO-2017/27/B/ST5/00472]
dc.description.sponsorshipM.I., M.J. and J.K. acknowledge the financial support from the Polish National Science Center (grant no. UMO-2017/27/B/ST5/00472 to J.K.).
dc.identifier.doi10.3390/ijms22168396
dc.identifier.issn1422-0067
dc.identifier.issue16
dc.identifier.pmid34445103
dc.identifier.scopus2-s2.0-85111742295
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.3390/ijms22168396
dc.identifier.urihttps://hdl.handle.net/20.500.13099/1581
dc.identifier.volume22
dc.identifier.wosWOS:000689187200001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.language.isoen
dc.publisherMdpi
dc.relation.ispartofInternational Journal of Molecular Sciences
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WOS_20250316
dc.subjectbiohybrid nanodevices
dc.subjectbiophotovoltaics
dc.subjectCyanidioschyzon merolae
dc.subjectdirect electron transfer
dc.subjectphotosystem I
dc.subjectsingle layer graphene
dc.titleDevelopment of a Novel Nanoarchitecture of the Robust Photosystem I from a Volcanic Microalga Cyanidioschyzon merolae on Single Layer Graphene for Improved Photocurrent Generation
dc.typeArticle

Dosyalar