Yazar "Salem-Bekhit, M. M." seçeneğine göre listele
Listeleniyor 1 - 8 / 8
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A facile detection of ethanol by the Be/Mg/Ca-enhanced fullerenes: Insights from density functional theory(Elsevier, 2023) Toiserkani, F.; Mirzaei, M.; Alcan, V.; Harismah, K.; Salem-Bekhit, M. M.This work was done due to a need of developing a facile detection platform of ethanol (EtOH) type of alcohol for various reasons from the police uses up to the medical and industrial uses. To this aim, a representative model of fullerene (FULL) was doped by each of the beryllium (Be), magnesium (Mg), and calcium (Ca) alkali-earth atoms to produce MFULL counterparts including BeFULL, MgFULL, and CaFULL to be examined towards the adsorption of EtOH substance. Accordingly, the models were stabilized and their structural features were evaluated in addition to the evaluation of electronic based frontier molecular orbital features. The results showed possibility of formation of EtOH@FULL and EtOH@MFULL complexes by a priority of formation of the doped models, in which the formation of EtOH@BeFULL complex was found at the highest level of suitability regarding the energy terms and integration details. Subsequently, the electronic features indicated measurable variation of molecular orbital levels to approach a point of detection of adsorbed EtOH by the assistance of fullerenes. Meaningful results were found by performing density functional theory (DFT) calculations for showing the stability of EtOH@MFULL complexes besides evaluating measurable electronic features. Accordingly, the idea of developing a facile detection of EtOH by the Be/Mg/Ca-enhanced fullerenes was affirmed.Öğe Assessing BeO, MgO, and CaO nanocages for a facile detection of hazardous phosgene oxime along with DFT calculations(Elsevier, 2023) Saadh, M. J.; Mirzaei, M.; Abdullaev, S.; Pecho, R. D. Cosme; Harismah, K.; Salem-Bekhit, M. M.; Akhavan-Sigari, R.The current density functional theory (DFT) work was done for assessing beryllium oxide, magnesium oxide, and calcium oxide nanocages; assigned by BeO, MgO, and CaO, for a facile detection of hazardous phosgene oxime (CX) substance in order to approach novel materials developments for the hazardous substances detections. The results indicated meaningful formations of the complexes in an adsorption strength order; CX@BeO < CX@MgO < CX@CaO, resulting a suitable recovery time. Further conductance rate analyses were done to see the features of detection processes, in which measuring the molecular orbitals variations indicated the detectable formation of complexes. The values of energy gap could stand for managing the detection processes. Additionally, analyzing the impacts of watery and oily environments showed the suitability of watery medium for reaching a better stability of models in comparison with the oily medium.Öğe Density functional theory analyses of an iron-doped nanocage for the adsorption of allopurinol drug towards the development of novel carriers(Elsevier, 2024) Saadh, M. J.; Mirzaei, M.; Ghnim, Z. S.; Mosaddad, S. A.; Salem-Bekhit, M. M.An iron-doped nanocage (FeC22) was assessed in this work based on density functional theory (DFT) calculations to work as a carrier of allopurinol (ALP) drug during its adsorption. The structural and electronic specifications were evaluated to analyze the formation of ALP@FeC22 conjugation yielding A1, A2, and A3 configurations with different featured properties. The existences of O...Fe, N...Fe, and H...C interactions were found for the conjugation formation in a physical non-covalent mode, in which the collaboration of N...Fe and H...C interactions yielded the strongest A3 conjugation with -49.31 kcal/mol strength. Interactions details also confirmed the formation of such strong conjugation. The electronic specifications based on the dominant frontier molecular orbitals showed measurable variations of features from the parental nanocage to the conjugation and also among the configurations. Finally, the FeC22 nanocage was proposed as a possible carrier of ALP by the formation of ALP@FeC22 conjugation for a smart drug delivery platform.Öğe Density functional theory assessments of an iron-doped graphene platform towards the hydrea anticancer drug delivery(Elsevier Science Sa, 2024) Saadh, M. J.; Mirzaei, M.; Dhiaa, S. M.; Hosseini, L. S. Rokni; Kushakova, G.; Da'i, M.; Salem-Bekhit, M. M.Customizing an iron-enhanced graphene (FEGR) platform for the drug delivery of hydrea (HYD) anticancer was investigated in this work along with density functional theory (DFT) calculations. The required structural and electronic features were evaluated to learn details of adsorbing or sensing functions for the investigated systems. Seven configurations of interacting HYD@FEGR bimolecular complexes were stabilized based on the 3D configurations of interacting counterparts towards each other. The keto oxygen atom of HYD and the iron atom of FEGR were involving in the main interaction of complex formation yielding the highest stabilized formation of configuration-5 by the assistance of surrounding interactions. Detailed variations of models were monitored by the electronic features of different states in correspondence with the frontier molecular orbitals to detect the communication mechanism of HYD counterpart and the enhanced FEGR platform through the formation of HYD@FEGR bimolecular complexes. In this regard, the models were known by their characteristic structural and electronic specifications for approaching the adsorbing or sensing function of FEGR towards the HYD anticancer drug delivery. Additionally, the water-solvated thermochemistry results indicated benefits of HYD@FEGR bimolecular complexes for working in the water medium. Finally, the achievements of this work indicated a customized FEGR platform for the drug delivery of HYD anticancer.Öğe Explorations of structural and electronic features of an enhanced iron-doped boron nitride nanocage for adsorbing/sensing functions of the hydroxyurea anticancer drug delivery under density functional theory calculations(Elsevier, 2023) Saadh, M. J.; Mirzaei, M.; Abdullaeva, B. S.; Maaliw III, R. R.; Da'i, M.; Salem-Bekhit, M. M.; Akhavan-Sigari, R.An iron-doped boron nitride (FBN) nanocage was investigated for adsorbing/sensing the hydroxyurea (Hyd) anticancer for the smart and targeted drug delivery processes. Optimizations were done under density functional theory (DFT) calculations and the properties were obtained. Interaction of Hyd with each of FBN and BN nanocages yielded four configurations of Hyd@FBN and Hyd@BN complexes. The FBN nanocage surface was found better for interacting with the Hyd counterpart; stronger Hyd@FBN complexes than the Hyd@BN complexes were obtained. The electronic frontier molecular orbital features showed a stronger tendency of complex formations for the FBN nanocage by a shorter energy gap for a better interaction with the Hyd substance. The adsorbing features indicated a meaningful recovery time and those of sensing features indicated a meaningful conductance rate for the investigated FBN nanocage. As a consequence, the FBN nanocage was proposed for involving in the drug delivery processes but still requiring further investigations.Öğe Metal-doped fullerenes as promising drug carriers of hydroxycarbamide anticancer: Insights from density functional theory(Elsevier, 2023) Salem-Bekhit, M. M.; Al Zahrani, S.; Alhabib, N. A.; Maaliw III, R. R.; Da'i, M.; Mirzaei, M.Assessing an idea of metal-doped fullerenes (MF) as promising drug carriers of hydroxycarbamide; also known as hydroxyurea, (Hyd) anticancer was done in this work by performing density functional theory (DFT) calculations. A model of carbon fullerene was doped by each of iron (Fe), nickel (Ni), and zinc (Zn) transition metal atoms to provide enhanced FeF, NiF, and ZnF doped fullerenes for working towards the Hyd anticancer regarding the drug delivery issues. The model were optimized and their evaluated features indicated a possibility of occurrence of MF -> Hyd@MF mechanism through the involving O...M and H...C interactions from the Hyd side to the MF side. The longest recovery time duration was supposed to be found for the Hyd@ZnF complex because of the largest strength and the highest conductance rate variation was supposed to be found for the Hyd@NiF complex because of the smallest energy gap. However, all the complex models were in a reasonable level of formations and electronic variations to be monitored for approaching a sensing or detecting function. In this regard, the enhanced models of FeF, NiF, and ZnF doped fullerenes were found suitable to work as promising carriers of Hyd anticancer regarding the drug delivery issues by the formation of interacting Hyd@FeF, Hyd@NiF, and Hyd@ZnF complexes in meaningful levels of structural and electronic features.Öğe Sensing the formaldehyde pollutant by an enhanced BNC18 fullerene: DFT outlook(Elsevier, 2023) Da'i, M.; Mirzaei, M.; Toiserkani, F.; Mohealdeen, S. M.; Yasin, Y.; Salem-Bekhit, M. M.; Akhavan-Sigari, R.An enhanced boron nitrogen decorated carbon fullerene with the formula BNC18 (BNC) was investigated for sensing the formaldehyde (FMA) pollutant. Density functional theory (DFT) calculations were performed to optimize the pure C fullerene and the BNC one to prepare a comparative study of facile detection of FMA substance through the formation of FMA@C and FMA@BNC complexes. The details of complexes were re recognized by the additional quantum theory of atoms in molecule (QTAIM) analyses, in which the formations of both of FMA@C and FMA@BNC were confirmed. However, the BN-decoration enhancement provided a better interacting surface for the BNC fullerene towards the FMA substance in comparison with the pure C fullerene. Moreover, the electronic molecular orbitals features indicated a significant sensing function for the BNC model by improving the semiconductivity for recognizing the adsorbed substance. In this regard, the BNC fullerene was found suitable for successfully approaching two terms of recovery time and conductance rate for sensing the FMA pollutant.Öğe The drug delivery of methimazole through the sensing function assessments of BeO fullerene-like particles: DFT study(Elsevier, 2023) Salem-Bekhit, M. M.; Da'i, M.; Rakhmatullaeva, M. M.; Mirzaei, M.; Al Zahrani, S.; Alhabib, N. A.Due to importance of developing insights into the related issues of drug delivery processes, the beryllium oxide fullerene-like particles were investigated in this work the in the original BeO form and a zinc-enhanced ZnBeO form to work for the sensing function of methimazole (MET) drug. Optimizing the geometries of molecular models and obtaining their structural and electronic features were done under performing density functional theory (DFT) calculations. To show the impacts of zinc-enhancement, singular and complex states of molecular models were analyzed based on the performed calculated results for the BeO and ZnBeO particles to detect and adsorb the MET counterpart. Formations of two MBeO complexes and one MZnBeO complex were obtained by the optimizations, in which the features of ZnBeO particle were found better for the formation of MZnBeO complex remarkably more suitable than the features of original BeO particle for the formation of MBeO complexes. In this regard, based on the adsorption strengths and the corresponding electronic-based frontier molecular orbital features, the models were characterized and to measure the recovery time and conductance rate features for the BeO and ZnBeO particles towards the sensing function of MET counterpart in order to approach a successful drug delivery process.