Explorations of structural and electronic features of an enhanced iron-doped boron nitride nanocage for adsorbing/sensing functions of the hydroxyurea anticancer drug delivery under density functional theory calculations
[ X ]
Tarih
2023
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
An iron-doped boron nitride (FBN) nanocage was investigated for adsorbing/sensing the hydroxyurea (Hyd) anticancer for the smart and targeted drug delivery processes. Optimizations were done under density functional theory (DFT) calculations and the properties were obtained. Interaction of Hyd with each of FBN and BN nanocages yielded four configurations of Hyd@FBN and Hyd@BN complexes. The FBN nanocage surface was found better for interacting with the Hyd counterpart; stronger Hyd@FBN complexes than the Hyd@BN complexes were obtained. The electronic frontier molecular orbital features showed a stronger tendency of complex formations for the FBN nanocage by a shorter energy gap for a better interaction with the Hyd substance. The adsorbing features indicated a meaningful recovery time and those of sensing features indicated a meaningful conductance rate for the investigated FBN nanocage. As a consequence, the FBN nanocage was proposed for involving in the drug delivery processes but still requiring further investigations.
Açıklama
Anahtar Kelimeler
Adsorbing, Boron nitride, DFT, Drug delivery, Nanocage, Sensing
Kaynak
Physica B-Condensed Matter
WoS Q Değeri
Q2
Scopus Q Değeri
Q2
Cilt
671