Yazar "Kurt, Cansu Caliskan" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Evaluation of photodynamic therapy and nuclear imaging potential of subphthalocyanine integrated TiO 2 nanoparticles in mammary and cervical tumor cells(World Scientific Publishing Co. Pte Ltd, 2019) Yurt, Fatma; Ocakoglu, Kasim; Er, Ozge; Soylu, Hale Melis; Ince, Mine; Avci, Clglr Biray; Kurt, Cansu CaliskanThis study, subphthalocyanines (SubPc) and SubPc integrated TiO2 nanoparticles (SubPc-TiO2) were synthesized as novel photosensitizers. Their PDT effects were evaluated. Furthermore, nuclear imaging potential of 131I-labelled SubPc/SubPc-TiO2 were examined in mouse mammary carcinoma (EMT6) and cervix adenocarcinoma (HeLa) cell lines. The uptake results show that SubPc labelled with 131I radionuclide (131I-SubPc) in EMT6 and HeLa cell lines was found to be approximately the same as in the WI38 cell line. However, the uptake values of SubPc-TiO2 labelled with 131I (131I-SubPc-TiO2) in EMT6 and HeLa cell lines were determined to be two times higher than in the WI38 cell line. In other words, the target/non-target tissue ratio was identified as two in the EMT6 and HeLa cell lines. 131I-SubPc-TiO2 is promising for imaging or treatment of breast and cervix tumors. In vitro photodynamic therapy studies have shown that SubPc and SubPc-TiO2 are suitable agents for PDT. In addition, SubPc-TiO2 has higher phototoxicity than SubPc. As a future study, in vivo experiments will be held and performed in tumor-bearing nude mice. © 2019 World Scientific Publishing Company.Öğe Evaluation of photodynamic therapy and nuclear imaging potential of subphthalocyanine integrated TiO2 nanoparticles in mammary and cervical tumor cells(World Sci Publ Co Inc, 2019) Yurt, Fatma; Ocakoglu, Kasim; Er, Ozge; Soylu, Hale Melis; Ince, Mine; Avci, Cigir Biray; Kurt, Cansu CaliskanThis study, subphthalocyanines (SubPc) and SubPc integrated TiO2 nanoparticles (SubPc-TiO2) were synthesized as novel photosensitizers. Their PDT effects were evaluated. Furthermore, nuclear imaging potential of I-131-labelled SubPc/SubPc-TiO2 were examined in mouse mammary carcinoma (EMT6) and cervix adenocarcinoma (HeLa) cell lines. The uptake results show that SubPc labelled with I-131 radionuclide ((131) I-SubPc) in EMT6 and HeLa cell lines was found to be approximately the same as in the WI38 cell line. However, the uptake values of SubPc-TiO2 labelled with I-131(I-131-SubPc- TiO2) in EMT6 and HeLa cell lines were determined to be two times higher than in the WI38 cell line. In other words, the target/non-target tissue ratio was identified as two in the EMT6 and HeLa cell lines. I-131-SubPc-TiO2 is promising for imaging or treatment of breast and cervix tumors. In vitro photodynamic therapy studies have shown that SubPc and SubPc-TiO2 are suitable agents for PDT. In addition, SubPc-TiO2 has higher phototoxicity than SubPc. As a future study, in vivo experiments will be held and performed in tumor-bearing nude mice.