Yazar "Gonca, Serpil" seçeneğine göre listele
Listeleniyor 1 - 9 / 9
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Antifouling and antibacterial performance evaluation of polyethersulfone membranes modified with AZ63 alloy(Iwa Publishing, 2023) Ozay, Yasin; Alterkaoui, Aya; Kahya, Kursat; Ozdemir, Sadin; Gonca, Serpil; Dizge, Nadir; Ocakoglu, KasimAntibacterial membranes have attracted researchers' interest in recent years as a possible approach for dealing with biofouling on the membrane surface. This research aims to see if blending AZ63 Mg alloy into a polyethersulphone (PES) membrane can improve antifouling and separation. The composite membranes' pure water flux continued to increase from pristine PES to PES/AZ63 2.00 wt%. The results showed that PES/AZ63 2.00 wt% membrane supplied the highest permeate flux of E. coli. The steady-state fluxes of AZ63 composite membranes were 113.24, 104.38 and 44.79 L/m(2)h for PES/AZ63 2.00 wt%, 1.00 wt%, and 0.50 wt%, respectively. The enhanced biological activity of AZ63 was studied based on antioxidant activity, DNA cleavage, antimicrobial, anti-biofilm, bacterial viability inhibition and photodynamic antimicrobial therapy studies. The maximum DPPH scavenging activity was determined as 81.25% with AZ63. AZ63 indicated good chemical nuclease activity and also showed moderate antimicrobial activity against studied strains. The highest biofilm inhibition of AZ63 was 83.25% and 71.63% towards P. aeruginosa and S. aureus, respectively. The cell viability inhibition activity of AZ63 was found as 96.34% against E. coli. The photodynamic antimicrobial therapy results displayed that AZ63 demonstrated 100% bacterial inhibition when using E. coli.Öğe Antimicrobial Effects of Nanostructured Rare-Earth-Based Orthovanadates(Springer, 2022) Gonca, Serpil; Yefimova, Svetlana; Dizge, Nadir; Tkachenko, Anton; Ozdemir, Sadin; Prokopiuk, Volodymyr; Klochkov, VladimirThe search for novel antimicrobial agents is of huge importance. Nanomaterials can come to the rescue in this case. The aim of this study was to assess the cytotoxicity and antimicrobial effects of rare-earth-based orthovanadate nanoparticles. The cytotoxicity against host cells and antimicrobial activity of LaVO4:Eu3+ and GdVO4:Eu3+ nanoparticles were analyzed. Effects of nanomaterials on fibroblasts were assessed by MTT, neutral red uptake and scratch assays. The antimicrobial effects were evaluated by the micro-dilution method estimating the minimum inhibitory concentration (MIC) of nanoparticles against various strains of microorganisms, DNA cleavage and biofilm inhibition. GdVO4:Eu3+ nanoparticles were found to be less toxic against eukaryotic cells compared with LaVO4:Eu3+. Both nanoparticles exhibited antimicrobial activity and the highest MIC values were 64 mg/L for E. hirae, E. faecalis and S. aureus shown by GdVO4:Eu3+ nanoparticles. Nanoparticles demonstrated good DNA cleavage activity and induction of double-strand breaks in supercoiled plasmid DNA even at the lowest concentrations used. Both nanoparticles showed the biofilm inhibition activity against S. aureus at 500 mg/L and reduced the microbial cell viability. Taken the results of host toxicity and antimicrobial activity studies, it can be assumed that GdVO4:Eu3+ nanoparticles are more promising antibacterial agents compared with LaVO4:Eu3+ nanoparticles.Öğe Experimental confirmation of antimicrobial effects of GdYVO4:Eu3+ nanoparticles(Taylor & Francis Ltd, 2021) Gonca, Serpil; Ozdemir, Sadin; Yefimova, Svetlana; Tkachenko, Anton; Onishchenko, Anatolii; Klochkov, Vladimir; Kavok, NataliyaNanotechnology can be applied to design antibacterial agents to combat antibiotic resistance. The aim of the present study was to assess the antimicrobial effects and cytotoxicity of GdYVO4:Eu3+ nanoparticles (NPs). Biofilm inhibition activity, antimicrobial activity, bacterial viability inhibition and DNA cleavage activity of GdYVO4:Eu3+ NPs were studied. In addition, the impact of GdYVO4:Eu3+ NPs on the mitochondrial membrane potential (Delta psi(M)) of host immune cells and, hence, their apoptosis was analyzed by JC-1 staining using flow cytometry. GdYVO4:Eu3+ NPs demonstrated good antimicrobial, cell viability inhibition and DNA cleavage activities. In addition, GdYVO4:Eu3+ NPs showed good biofilm inhibition activity against S. aureus and P. aeruginosa and inhibition percentages were 89.15% and 79.54%, respectively. However, GdYVO4:Eu3+ NPs promoted mitochondrial depolarization and apoptosis of leukocytes at high concentrations. GdYVO4:Eu3+ nanoparticles are promising antibacterial agents. However, more efforts should be exerted to ensure their safety.Öğe Fabrication of Ag nanoparticles coated leonardite basalt ceramic membrane with improved antimicrobial properties for DNA cleavage, E. coli removal and antibiofilm effects(Elsevier Science Inc, 2023) Saleh, Mohammed; Isik, Zelal; Belibagli, Pinar; Arslan, Hudaverdi; Gonca, Serpil; Ozdemir, Sadin; Kudaibergenov, NurbolatThis study aimed to fabricate a novel, low-cost, and environmental-friendly ceramic membrane based on basalt and leonardite powders via press and sintering methods. The fabricated leonardite basalt ceramic membrane (LBCM) was coated with silver nanoparticles (AgNPs); to create an antibacterial surface. The capabilities of the bare and coated membranes were examined. In this context, water permeability reached 554 +/- 2.61 and 447 +/- 1.21 L/m2hbar for bare LBCM and AgNPs-coated LBCM, respectively. The fabricated membranes indicated 100% Escherichia coli (E. coli) removal efficiency at a transmembrane pressure of 0.5 bar. The solid surface antimicrobial activity of the LBCM and AgNPs-coated LBCM reached 26.38% and 100%, respectively. The LBCM and AgNPs-coated LBCM were analyzed for the in-vitro 2,2diphenyl-1-picrylhydrazyl (DPPH) antioxidant. Accordingly, AgNPs-coated LBCM exhibited higher antioxidant activities than raw LBCM. The scavenging capacity reached 83.91% with AgNPs-coated LBCM, while only 58.95% was achieved with raw LBCM, indicating that AgNPs-coated LBCM was better than bare LBCM from an antioxidant activities perspective. AgNPs-coated LBCM had a deoxyribonucleic acid (DNA) cleavage activity (single-strand DNA cleavage activity at 50 mg/L and double-strand DNA cleavage activity at 100 and 200 mg/L). In contrast, the raw LBCM did not exhibit DNA cleavage activity at any concentration. AgNPs-coated LBCM showed higher antimicrobial activities (minimum inhibition concentrations (MICs) were 32 mg/L against Enterococcus faecalis (E. faecalis) and 64 mg/L against Staphylococcus aureus (S. aureus), Candida tropicalis (C. tropicalis), and Enterococcus hirae (E. hirae)). The biofilm inhibition of LBCM and AgNPs-coated LBCM powders was tested against S. aureus and Pseudomonas aeruginosa (P. aeruginosa). The maximum S. aureus inhabitations by LBCM and AgNPcoated LBCM were 60.34% and 99.12%, respectively. The inhabitation of P. aeruginosa increased from 52.38% before coating to 96.37% at the end of the coating process. Regarding E.coli microbial cell viability inhibition, LBCM powders and AgNPs-coated LBCM powders were found to inhibit E. coli growth by 68.35% and 100%, respectively. (c) 2023 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.Öğe Investigation of the antifouling properties of polyethersulfone ultrafiltration membranes by blending of boron nitride quantum dots(Elsevier, 2021) Sert, Buse; Gonca, Serpil; Ozay, Yasin; Harputlu, Ersan; Ozdemir, Sadin; Ocakoglu, Kasim; Dizge, NadirThis study aims to investigate the modification of polyethersulfone (PES) membrane with boron nitride quantum dots (BNQD) for improving the antifouling performance. The composite membranes were synthesized by blending different amounts of BNQD (0.50, 1.00, and 2.00 wt.%) into PES with the non-solvent induced phase separation (NIPS) method. UV-vis absorption, X-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to characterize BNQD. Moreover, porosity, pore size, contact angle, permeability, bovine serum albumin (BSA) rejection, and antifouling properties were determined for composite membranes. The enhanced biological activity of BNQD was investigated based on antioxidant, antimicrobial, anti-biofilm, bacterial viability inhibition, and DNA cleavage studies. The BNQD showed 19.35 % DPPH radical scavenging activity and 76.45 % ferrous ion chelating activity at 500 mg/L. They also exhibited good chemical nuclease activity at all concentrations. BNQD had moderate antibacterial activity against all tested microorganisms. Biofilm inhibition percentage of BNQD was determined as 82.31 % at 500 mg/L. Cell viability assay demonstrated that the BNQD showed strong cell viability inhibition 99.9 % at the concentration of 1000 mg/L. The porosity increased from 56.83 +/- 1.17%-61.83 +/- 1.17 % while BNQD concentration increased from 0 to 2.00 wt%. Moreover, the hydrophilicity of BNQD nanocomposite membranes also increased from 75.42 +/- 0.56 degrees to 65.34 +/- 0.25 degrees. The mean pore radius is far slightly changed from 16.47 +/- 0.35 nm to 19.16 +/- 0.22 nm. The water flux increased from 133.5 +/- 9.5 L/m(2)/h (for pristine membrane) to 388.6 +/- 18.8 L/m(2)/h (for PES/BNQD 2.00 wt% membrane). BSA flux increased from 38.8 +/- 0.9 L/m(2)/h to 63.2 +/- 2.7 L/m(2)/h up to 1.00 wt% amount of BNQD nanoparticles.Öğe Investigation of the Effect of Sintering of Waste Welding Powder on Antioxidant and Antimicrobial Activity(Springer Int Publ Ag, 2022) Eskikaya, Ozan; Arslan, Hudaverdi; Ozdemir, Sadin; Gonca, Serpil; Dizge, NadirThe use of waste as a material that can be useful in other areas can reduce both waste generation and the need for resources. Welding powder with high heavy metal content should be used for other purposes. For this reason, the welding powder, which is frequently used in the metal industry and released after the welding process, is desired to be used as an agent against microorganisms in this study. Several biological activities of welding powder and its sintered forms also investigated. The welding powder and its sintered forms showed moderate antioxidant and antimicrobial activity. Welding powder without sintering is called WP. Welding powders sintered at 300 ?degrees C, 600?degrees C, and 900?degrees C are named as WP300, WP600, and WP900, respectively. DNA cleavage activity was tested, and it showed single-stand cleavage against pBR 322 plasmid DNA. They displayed excellent biofilm inhibition activity, and the biofilm inhibition of WP, WP300, WP600, and WP900 against S. aureus and P. aeruginosa were found as 99.34%, 99.21%, 98.99%, and 99.12% and 98.32%, 96.11%, 96.38%, and 95.39%, respectively, at concentrations of 500 mg/L, respectively. They also demonstrated significant cell viability activity against E. coli.Öğe Preparation of ZnO nanorods or SiO2 nanoparticles grafted onto basalt ceramic membrane and the use for E. coli removal from water(Elsevier Sci Ltd, 2021) Saleh, Mohammed; Gonca, Serpil; Isik, Zelal; Ozay, Yasin; Harputlu, Ersan; Ozdemir, Sadin; Yalvac, MutluThis article addresses the fabrication of a novel and eco-friendly ceramic membrane based on basalt powder via press and sintering methods with a pore size of 1.5-2 mu m. The basalt ceramic membrane (BCM) was grafted by SiO2 nanoparticles (50-60 nm) and ZnO nanorods (2.2 mu m). The water permeability for the prepared membranes was measured 345.3, 701.4, and 801.9 L/m(2) h bar for bare BCM, SiO2-BCM, and ZnO-BCM, respectively. The prepared membranes were used in Escherichia coli (E. coli) removal, and 100% E. coli removal efficiency was achieved at a transmembrane pressure of 0.5 bar for all membranes. The antimicrobial activities of the solid surfaces for BCM, SiO2-BCM, and ZnO-BCM were also studied using E. coli as a model test microorganisms. The antimicrobial activities for bare BCM, SiO2-BCM, and ZnO-BCM were 20.57%, 74.90%, and 100%, respectively. The results are of great importance in terms of the reusability of membranes and the prevention of biofilm formation in wastewater treatment processes.Öğe Synthesis and characterization of perovskite type of La1-xBaxMnO3 nanoparticles with investigation of biological activity(Elsevier, 2022) Gonca, Serpil; ozdemir, Sadin; Tekgul, Atakan; Unlu, Cumhur Gokhan; Ocakoglu, Kasim; Dizge, NadirThe enhanced biological activity of perovskite type La1-xBaxMnO3 (x = 0.2, 0.3, 0.4) nanoparticle was studied based on antioxidant, antimicrobial, anti-biofilm, bacterial viability inhibition, and DNA cleavage studies. The nanoparticles were prepared by Sol-gel technique and they were analyzed on structure and morphological by XRD and SEM. La0.6Ba0.4MnO3 showed the highest DPPH free radical scavenging activity and iron chelating activity as 67.23% and 46.54%, respectively. All tested lanthanum nanoparticles showed good chemical nuclease activity. C. tropicalis was the most affected species by lanthanum nanoparticles and MIC values were 4 mu g/mL, 8 mu g/mL, and 16 mu g/mL for La0.7Ba0.4MnO3, La0.6Ba0.4MnO3, and La0.8Ba0.2MnO3, respectively. La0.7Ba0.4MnO3 exhibited the highest percentage of biofilm inhibition against P. aeruginosa and S. aureus as 99.78% and 98.38%, respectively. Cell viability assay demonstrated that La0.7Ba0.4MnO3, La0.6Ba0.4MnO3, and La0.8Ba0.2MnO3 showed %100 cell viability inhibition after 30 and 60 min treatment. (C) 2021 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.Öğe Synthesis of Rhombic Dodecahedral Cuprous Oxide Nanoparticles and Investigation of Biological Activity(Springer, 2022) Kucukosman, Ridvan; Isik, Zelal; Ozdemir, Sadin; Gonca, Serpil; Ocakoglu, Kasim; Dizge, NadirThe rhombic dodecahedral cuprous oxide (Cu2O) nanoparticles (NPs) were synthesized with the morphology-controlled one-pot solution-phase technique and several biological activities were investigated. The structural and elemental properties of Cu2O NPs were determined by SEM-EDX and XRD. Antioxidant, antimicrobial, DNA interaction, and biofilm inhibition activities were determined by using DPPH radical scavenging and metal chelating, microdilution, agarose gel electrophoresis, and crystal violet methods, respectively. The newly synthesized copper nanoparticle showed excellent DPPH and iron-chelating activities as 100% at 200 mg/L concentration. It showed good DNA cleavage activity at all concentrations. Cu2O NP had good antibacterial activity against all tested microorganisms. Biofilm inhibition percentage of Cu2O NP was determined as 86.3% at 500 mg/L. The cell viability assay demonstrated that the Cu2O NP showed 100% cell viability inhibition at all concentrations. Generally, owing to the biological active nature of the synthesized copper nanoparticle, these synthesized Cu2O NPs can be used as a therapeutic and antioxidant agent.