Group matrix ring codes and constructions of self-dual codes
Citation
Dougherty, S. T., Korban, A, Sahinkaya, S, Ustun, D. (2023). Group matrix ring codes and constructions of self-dual codes. Applicable Algebra in Engineering Communication And Computing, 34 (2), 279-299. DOI10.1007/s00200-021-00504-9Abstract
In this work, we study codes generated by elements that come from group matrix rings. We present a matrix construction which we use to generate codes in two different ambient spaces: the matrix ring M-k(R) and the ring R, where R is the commutative Frobenius ring. We show that codes over the ring M-k(R) are one sided ideals in the group matrix ring M-k(R)G and the corresponding codes over the ring R are G(k)-codes of length kn. Additionally, we give a generator matrix for self-dual codes, which consist of the mentioned above matrix construction. We employ this generator matrix to search for binary self-dual codes with parameters [72, 36, 12] and find new singly-even and doubly-even codes of this type. In particular, we construct 16 new Type I and 4 new Type II binary [72, 36, 12] self-dual codes.