Wavelength-induced modifications of thermoelectric properties of laser-textured Bi2Sr2-xBaxCo2O8 ceramics for sustainable energy generation

[ X ]

Tarih

2025

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Ba-doped Bi2Sr2-xBaxCo2O8 samples have been directionally grown using the Laser Floating Zone technique using two different lasers, leading to significant differences between the samples. Powder XRD patterns revealed that the major phase in all samples is the thermoelectric one, without notable differences with the type of laser. On the other hand, microstructure studies showed significant differences between Nd:YAG and CO2-grown samples. Use of CO2 laser promoted a reduction of secondary phases content and a higher grain alignment. Furthermore, Ba-doping further decreases the secondary phases content and increases grain alignment. The electrical resistivity was affected by the different microstructures, being lower for the CO2-grown samples, reaching the lowest values at 650 degrees C in 0.125Ba-doped samples, 12.8 m Omega cm, which are among the best reported in the literature. However, S is maintained practically unchanged independently of the laser and composition. As a consequence, PF values mainly depend on the electrical resistivity and, consequently, the highest values at 650 degrees C, 0.22 mW/K2m, have been achieved in 0.125Ba samples textured with CO2 laser. These values are around the best ones presented in the literature for this material. Additionally these textured materials possess the advantage of avoiding the typical machining processes which are necessary in bulk materials for their integration into thermoelectric modules. These characteristics may enhance the interest on these materials in order to be used in practical devices to help their use to produce affordable, reliable and sustainable energy for all mankind.

Açıklama

Anahtar Kelimeler

Bi2Sr2Co2Oy, Grain gowth, Electrical resistivity, Seebeck coefficient, Power factor, Sustainable energy

Kaynak

Materials Science and Engineering B-Advanced Functional Solid-State Materials

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

313

Sayı

Künye