Assessment of Convective Heat Transfer Characteristics for Elliptical-Shaped Pin-Roughened Surface for the Jet Impingement Cooling

[ X ]

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Asme

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In a jet impingement cooling (JIC) system, the layout of the target surface and length of the jet holes can change both the flow field and the heat transfer characteristics. Elliptical-shaped pins (ESPs) with different heights and layouts on the target surface of the extended jet hole configurations were examined numerically in a jet impingement system. The ESPs were arranged in a staggered and circular form. Normalized nozzle length (G(j)/D-j = 1.0, 2.0, 6.0) and normalized pin height (H-p/D-j = 0, 0.167, 0.417, 0.667) were investigated as geometric parameters. Also, the effect of different pin layouts (R-1, R-2, R-3) on heat transfer dissipation was studied by changing the number of pin rows in particular configurations. A numerical model was developed and verified with experimental and numerical data from the literature. Numerical analyses were conducted with the shear stress transport (SST) k-omega turbulence model taking the boundary conditions into account under turbulent flow conditions (16,250 <= Re <= 32,500). Nusselt (Nu) numbers, pressure drop, and the thermo-hydraulic performance of the physical model were quantitatively researched to elucidate the underlying mechanisms of enhanced heat transfer by the ESPs. Results were compared with the orifice surface (H-p/D-j = 0 and G(j)/D-j = 6.0). Results showed that area-averaged Nu number on the target wall increased up to 35.82% for Re = 16,250 by R-2_G(j)/D-j = 1.0 and H-p/D-j = 0.167 compared to the conventional JIC system. The performance evaluation criterion (PEC) was used to analyze the thermo-hydraulic performance of the examined physical models. According to the PEC values, the most feasible parameters for all Re numbers were R-3_G(j)/D-j = 1.0 and H-p/D-j = 0.167. Furthermore, increasing the number of pin rows in the channel also increased the uniformity of the local heat transfer distribution according to Nu contours.

Açıklama

Anahtar Kelimeler

jet impingement, roughness element, pin layout, convection heat transfer, CFD

Kaynak

Asme Journal of Heat and Mass Transfer

WoS Q Değeri

N/A

Scopus Q Değeri

Q2

Cilt

145

Sayı

2

Künye