A new double-regularized regression using Liu and lasso regularization

dc.contributor.authorGenc, Murat
dc.date.accessioned2025-03-17T12:27:39Z
dc.date.available2025-03-17T12:27:39Z
dc.date.issued2022
dc.departmentTarsus Üniversitesi
dc.description.abstractThis paper discusses a new estimator that performs simultaneous parameter estimation and variable selection in the scope of penalized regression methods. The estimator is an extension of the Liu estimator with l(1)-norm penalization. We give the coordinate descent algorithm to estimate the coefficient vector of the proposed estimator, efficiently. We also examine the consistency properties of the estimator. We conduct simulation studies and two real data analyses to compare the proposed estimator with several estimators including the ridge, Liu, lasso and elastic net. The simulation studies and real data analyses show that besides performing automatic variable selection, the new estimator has considerable prediction performance with a small mean squared error under sparse and non-sparse data structures.
dc.identifier.doi10.1007/s00180-021-01120-4
dc.identifier.endpage227
dc.identifier.issn0943-4062
dc.identifier.issn1613-9658
dc.identifier.issue1
dc.identifier.scopus2-s2.0-85108220345
dc.identifier.scopusqualityQ2
dc.identifier.startpage159
dc.identifier.urihttps://doi.org/10.1007/s00180-021-01120-4
dc.identifier.urihttps://hdl.handle.net/20.500.13099/2378
dc.identifier.volume37
dc.identifier.wosWOS:000663292300001
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorGenc, Murat
dc.language.isoen
dc.publisherSpringer Heidelberg
dc.relation.ispartofComputational Statistics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250316
dc.subjectIll-posed problems
dc.subjectLasso
dc.subjectLiu regression
dc.subjectRegularization
dc.subjectVariable selection
dc.titleA new double-regularized regression using Liu and lasso regularization
dc.typeArticle

Dosyalar