Hyperparameter optimization of deep CNN classifier for plant species identification using artificial bee colony algorithm

dc.authoridhttps://orcid.org/0000-0002-5229-4018
dc.authoridhttps://orcid.org/0000-0002-2481-0230
dc.authoridhttps://orcid.org/0000-0002-7687-9061
dc.authorscopusid57188968069
dc.authorscopusid36705310900
dc.authorscopusid36728602600
dc.authorwosidABH-7309-2020
dc.authorwosidD-7354-2015
dc.authorwosidG-2829-2015
dc.contributor.authorErkan, Uğur
dc.contributor.authorToktaş, Abdurrahim
dc.contributor.authorÜstün, Deniz
dc.date.accessioned2024-07-31T12:41:57Z
dc.date.available2024-07-31T12:41:57Z
dc.date.issued2023
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
dc.description.abstractTailoring a deep convolutional neural network (CNN) for an implementation is a tedious and time-consuming task especially in image identification. In this study, an optimization scheme based on artificial bee colony (ABC) algorithm so-called optimal deep CNN (ODC) classifier for hyperparameter optimization of deep CNN is proposed for plant species identification. It is implemented to a ready-made leaf dataset namely Folio containing #637 images with 32 different plant species. The images are undergone various image preprocessing such as scaling, segmentation and augmentation so as to improve the efficacy of the ODC classifier. Therefore, the dataset is augmented from #637 to #15,288 leaf images whose #12,103 images is allocated for training phase and the remainder for testing the ODC. Moreover, a validation process on 20% of the training dataset is performed along with the training phase in both optimization and classification stages. The accuracy and loss performance of the ODC are examined over the training and validation results. The achieved ODC is verified through the test phase as well as by a comparison with the results in the literature in terms of performance evaluation metrics such as accuracy, sensitivity, specificity and F1-score. In order to further corroborate the proposed scheme, it is even subjected to a benchmark with optimization-based studies such as genetic, particle swarm and firefly algorithms through MNIST digit-image dataset. The ODC identifies the leaf images and digit-images with the best accuracy of 98.99% and 99.21% surpassing the state of the arts. Therefore, the proposed ODC is effective and useful in achieving an optimal CNN thanks to ABC algorithm.
dc.identifier.citationErkan, U., Toktas, A. ve Ustun, D. (2023). Hyperparameter optimization of deep CNN classifier for plant species identification using artificial bee colony algorithm. J Ambient Intell Human Comput 14, 8827–8838. Erişim adresi: https://doi.org/10.1007/s12652-021-03631-w
dc.identifier.doi10.1007/s12652-021-03631-w
dc.identifier.endpage8838en_US
dc.identifier.issn1868-5137
dc.identifier.issn1868-5145
dc.identifier.issue7en_US
dc.identifier.scopus2-s2.0-85122739521
dc.identifier.scopusqualityQ1
dc.identifier.startpage8827en_US
dc.identifier.urihttps://doi.org/10.1007/s12652-021-03631-w
dc.identifier.urihttps://hdl.handle.net/20.500.13099/305
dc.identifier.volume14en_US
dc.identifier.wosWOS:000741315400001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorÜstün, Deniz
dc.language.isoen
dc.publisherSpringer Link
dc.relation.ispartofJournal of Ambient Intelligence and Humanized Computing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectImage processing
dc.subjectImage identification
dc.subjectDeep convolution neural network
dc.subjectHyperparameter optimization
dc.subjectArtificial bee colony algorithm
dc.titleHyperparameter optimization of deep CNN classifier for plant species identification using artificial bee colony algorithm
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
2024-07-31 153925.png
Boyut:
185.98 KB
Biçim:
Portable Network Graphics
Açıklama:
Makale Dosyası
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: