Kernel stable and uniquely generated modules

dc.contributor.authorŞahinkaya, Serap
dc.contributor.authorQuynh, Truong Cong
dc.date.accessioned2025-03-17T12:22:53Z
dc.date.available2025-03-17T12:22:53Z
dc.date.issued2021
dc.departmentTarsus Üniversitesi
dc.description.abstractA module theoretic notion of annihilator-stable rings is defined and some characterizations of it are studied. A module M is called kernel-stable if every element α ∈ End(M) satisfies the following condition: if α(M) + Kerβ = M, β ∈ End(M), then (α − γ)(m) ∈Kerβ for an automorphism γ of M and for all m ∈ M. For a pseudo-semi-projective module M, this notion is equivalent to that of uniquely generated module. © 2021, Publishing House of the Romanian Academy. All rights reserved.
dc.identifier.doi10.24193/mathcluj.2021.1.11
dc.identifier.endpage127
dc.identifier.issn1222-9016
dc.identifier.issue1
dc.identifier.scopus2-s2.0-85122042154
dc.identifier.scopusqualityQ4
dc.identifier.startpage119
dc.identifier.urihttps://doi.org/10.24193/mathcluj.2021.1.11
dc.identifier.urihttps://hdl.handle.net/20.500.13099/1455
dc.identifier.volume63
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherPublishing House of the Romanian Academy
dc.relation.ispartofMathematica
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_Scopus_20250316
dc.subjectAnnihilator-stable rings
dc.subjectKernel-stable modules
dc.subjectMatrix rings
dc.subjectPseudo-semiprojective module
dc.subjectStable range
dc.subjectUniquely generated modules
dc.subjectUnit-regular rings
dc.subjectVon Neumann regular rings
dc.titleKernel stable and uniquely generated modules
dc.typeArticle

Dosyalar