Kernel stable and uniquely generated modules
dc.contributor.author | Şahinkaya, Serap | |
dc.contributor.author | Quynh, Truong Cong | |
dc.date.accessioned | 2025-03-17T12:22:53Z | |
dc.date.available | 2025-03-17T12:22:53Z | |
dc.date.issued | 2021 | |
dc.department | Tarsus Üniversitesi | |
dc.description.abstract | A module theoretic notion of annihilator-stable rings is defined and some characterizations of it are studied. A module M is called kernel-stable if every element α ∈ End(M) satisfies the following condition: if α(M) + Kerβ = M, β ∈ End(M), then (α − γ)(m) ∈Kerβ for an automorphism γ of M and for all m ∈ M. For a pseudo-semi-projective module M, this notion is equivalent to that of uniquely generated module. © 2021, Publishing House of the Romanian Academy. All rights reserved. | |
dc.identifier.doi | 10.24193/mathcluj.2021.1.11 | |
dc.identifier.endpage | 127 | |
dc.identifier.issn | 1222-9016 | |
dc.identifier.issue | 1 | |
dc.identifier.scopus | 2-s2.0-85122042154 | |
dc.identifier.scopusquality | Q4 | |
dc.identifier.startpage | 119 | |
dc.identifier.uri | https://doi.org/10.24193/mathcluj.2021.1.11 | |
dc.identifier.uri | https://hdl.handle.net/20.500.13099/1455 | |
dc.identifier.volume | 63 | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | Publishing House of the Romanian Academy | |
dc.relation.ispartof | Mathematica | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.snmz | KA_Scopus_20250316 | |
dc.subject | Annihilator-stable rings | |
dc.subject | Kernel-stable modules | |
dc.subject | Matrix rings | |
dc.subject | Pseudo-semiprojective module | |
dc.subject | Stable range | |
dc.subject | Uniquely generated modules | |
dc.subject | Unit-regular rings | |
dc.subject | Von Neumann regular rings | |
dc.title | Kernel stable and uniquely generated modules | |
dc.type | Article |