Numerical Investigation of the Electrophoretic Transition of a Charged Particle through a Nanochannel
[ X ]
Tarih
2021
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Institute of Electrical and Electronics Engineers Inc.
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Electrophoresis, which is defined as the migration of charged molecules or nanoparticles with the effect of an applied electric field, is a technique used for the separation and analysis of these substances by applying an electric potential to a liquid or solid medium. A charged solid nanoparticle covered with a permeable layer is a common example of natural nanosubstances such as biocolloids. Studying the translocation of such a particle along a nanochannel will provide a better understanding of such natural phenomena. With the emergence of a wide range of applications such as sequencing, separation, extraordinarily small volume chemical delivery, using nano-scale channel-like structures, it has become essential to adjust the velocities of the substances translocating through these nanostructures. In this study, the translocation of a charged solid nanoparticle through a nanochannel filled with an aqueous electrolyte solution, activated electrophoretically by an applied electric potential effect, was numerically investigated. Poisson-Nernst-Planck model, and modified Stokes and Brinkman equations were used for numerical solution. The ionic layer formed around the charged particle and the outer region of this layer were examined separately in terms of hydrodynamics, by applying different mathematical models. It was observed that the electrophoretic velocity of the nanoparticle strongly depends on the charged permeable layer formed around it. © 2021 IEEE.
Açıklama
5h International Symposium on Multidisciplinary Studies and Innovative Technologies, ISMSIT 2021 -- 21 October 2021 through 23 October 2021 -- Ankara -- 174473
Anahtar Kelimeler
electrophoresis, nanochannel, numerical continuum model, spherical particle
Kaynak
ISMSIT 2021 - 5th International Symposium on Multidisciplinary Studies and Innovative Technologies, Proceedings
WoS Q Değeri
Scopus Q Değeri
N/A