A multi-objective hierarchical deep reinforcement learning algorithm for connected and automated HEVs energy management

[ X ]

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Pergamon-Elsevier Science Ltd

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Connected and autonomous vehicles have offered unprecedented opportunities to improve fuel economy and reduce emissions of hybrid electric vehicle (HEV) in vehicular platoons. In this context, a hierarchical control strategy is put forward for connected HEVs. Firstly, we consider a deep deterministic policy gradient (DDPG) algorithm to compute the optimized vehicle speed using a trained optimal policy via vehicle-to-vehicle communication in the upper level. A multi-objective reward function is introduced, integrating vehicle fuel consumption, battery state-of-the-charge, emissions, and vehicle car-following objectives. Secondly, an adaptive equivalent consumption minimization strategy is devised to implement vehicle-level torque allocation in the platoon. Two drive cycles, HWFET and human-in-the-loop simulator driving cycles are utilized for realistic testing of the considered platoon energy management. It is shown that DDPG runs the engine more efficiently than the widely-implemented Q-learning and deep Q-network, thus showing enhanced fuel savings. Further, the contribution of this paper is to speed up the higher-level vehicular control application of deep learning algorithms in the connected and automated HEV platoon energy management applications.

Açıklama

Anahtar Kelimeler

Connected and automated vehicles, Deep learning, Deep reinforcement learning, Hybrid electric vehicles, Energy management

Kaynak

Control Engineering Practice

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

153

Sayı

Künye