Multiobjective Design of 2D Hyperchaotic System Using Leader Pareto Grey Wolf Optimizer
dc.authorid | https://orcid.org/0000-0002-5229-4018 | |
dc.authorscopusid | 36728602600 | |
dc.authorwosid | GQB-3301-2022 | |
dc.contributor.author | Toktaş, Abdurrahim | |
dc.contributor.author | Erkan, Uğur | |
dc.contributor.author | Üstün, Deniz | |
dc.contributor.author | Lai, Qiang | |
dc.date.accessioned | 2024-07-30T13:55:56Z | |
dc.date.available | 2024-07-30T13:55:56Z | |
dc.date.issued | 2024 | |
dc.department | Fakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | |
dc.description.abstract | A chaotic system is a mathematical model exhibiting random and unpredictable behavior. However, existing chaotic systems suffer from suboptimal parameters regarding chaotic indicators. In this study, a novel leader Pareto grey wolf optimizer (LP-GWO) is proposed for multiobjective (MO) design of 2D parametric hyperchaotic system (2D-PHS). The MO capability of LP-GWO is improved by integrating a LP solution within the Pareto optimal set. The effectiveness of LP-GWO is corroborated through a comparison with regular MO versions of grey wolf optimizer (GWO), artificial bee colony, particle swarm optimization, and differential evolution. Additionally, the validation extends to the exploration of LP-GWO's performance across four variants of the 2D-PHS optimized by the compared algorithms. A 2D-PHS model with eight parameters is conceived and then optimized using LP-GWO by ensuring tradeoff between two objectives: Lyapunov exponent (LE) and Kolmogorov entropy (KE). A globally optimal design is chosen for freely improving the two objectives. The chaotic performance of 2D-PHS significantly outperforms existing systems in terms of precise chaos indicators. Therefore, the 2D-PHS has the best ergodicity and erraticity due to optimal parameters provided by LP-GWO. | |
dc.identifier.citation | Toktas A., Erkan U., Ustun D., Lai Q.(2024).Multiobjective Design of 2D Hyperchaotic System Using Leader Pareto Grey Wolf Optimizer, IEEE Transactions on Systems, Man, and Cybernetics: Systems, s. 1-11, DOI: 10.1109/TSMC.2024.3401412 | |
dc.identifier.doi | 10.1109/TSMC.2024.3401412 | |
dc.identifier.endpage | 11 | en_US |
dc.identifier.issn | 2168-2216 | |
dc.identifier.issn | 2168-2232 | |
dc.identifier.scopus | 2-s2.0-85195386719 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 1 | en_US |
dc.identifier.uri | https://www.webofscience.com/wos/woscc/full-record/WOS:001242999700001 | |
dc.identifier.uri | https://hdl.handle.net/20.500.13099/297 | |
dc.identifier.wos | WOS:001242999700001 | |
dc.identifier.wosquality | Q1 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | Üstün, Deniz | |
dc.language.iso | en | |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
dc.relation.ispartof | IEEE Transactions on Systems, Man, and Cybernetics: Systems | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | Chaos | |
dc.subject | Vectors | |
dc.subject | Chaotic communication | |
dc.subject | Optimization | |
dc.subject | Pareto optimization | |
dc.subject | Heuristic algorithms | |
dc.subject | Linear programming | |
dc.subject | Chaotic system | |
dc.subject | grew wolf optimizer | |
dc.subject | modified algorithm | |
dc.subject | Pareto optimality | |
dc.subject | multiobjective (MO) optimization | |
dc.title | Multiobjective Design of 2D Hyperchaotic System Using Leader Pareto Grey Wolf Optimizer | |
dc.type | Article |