Fabrication of Ag nanoparticles coated leonardite basalt ceramic membrane with improved antimicrobial properties for DNA cleavage, E. coli removal and antibiofilm effects

dc.authoridArslan, Hudaverdi/0000-0002-3053-6944
dc.authoridBelibagli, Pinar/0000-0001-6643-9620
dc.authoridKudaibergenov, Nurbolat/0000-0002-4641-6779
dc.authoridISIK, Zelal/0000-0002-1249-8550
dc.authoridSaleh, Mohammed/0000-0002-3145-4457
dc.contributor.authorSaleh, Mohammed
dc.contributor.authorIsik, Zelal
dc.contributor.authorBelibagli, Pinar
dc.contributor.authorArslan, Hudaverdi
dc.contributor.authorGonca, Serpil
dc.contributor.authorOzdemir, Sadin
dc.contributor.authorKudaibergenov, Nurbolat
dc.date.accessioned2025-03-17T12:27:04Z
dc.date.available2025-03-17T12:27:04Z
dc.date.issued2023
dc.departmentTarsus Üniversitesi
dc.description.abstractThis study aimed to fabricate a novel, low-cost, and environmental-friendly ceramic membrane based on basalt and leonardite powders via press and sintering methods. The fabricated leonardite basalt ceramic membrane (LBCM) was coated with silver nanoparticles (AgNPs); to create an antibacterial surface. The capabilities of the bare and coated membranes were examined. In this context, water permeability reached 554 +/- 2.61 and 447 +/- 1.21 L/m2hbar for bare LBCM and AgNPs-coated LBCM, respectively. The fabricated membranes indicated 100% Escherichia coli (E. coli) removal efficiency at a transmembrane pressure of 0.5 bar. The solid surface antimicrobial activity of the LBCM and AgNPs-coated LBCM reached 26.38% and 100%, respectively. The LBCM and AgNPs-coated LBCM were analyzed for the in-vitro 2,2diphenyl-1-picrylhydrazyl (DPPH) antioxidant. Accordingly, AgNPs-coated LBCM exhibited higher antioxidant activities than raw LBCM. The scavenging capacity reached 83.91% with AgNPs-coated LBCM, while only 58.95% was achieved with raw LBCM, indicating that AgNPs-coated LBCM was better than bare LBCM from an antioxidant activities perspective. AgNPs-coated LBCM had a deoxyribonucleic acid (DNA) cleavage activity (single-strand DNA cleavage activity at 50 mg/L and double-strand DNA cleavage activity at 100 and 200 mg/L). In contrast, the raw LBCM did not exhibit DNA cleavage activity at any concentration. AgNPs-coated LBCM showed higher antimicrobial activities (minimum inhibition concentrations (MICs) were 32 mg/L against Enterococcus faecalis (E. faecalis) and 64 mg/L against Staphylococcus aureus (S. aureus), Candida tropicalis (C. tropicalis), and Enterococcus hirae (E. hirae)). The biofilm inhibition of LBCM and AgNPs-coated LBCM powders was tested against S. aureus and Pseudomonas aeruginosa (P. aeruginosa). The maximum S. aureus inhabitations by LBCM and AgNPcoated LBCM were 60.34% and 99.12%, respectively. The inhabitation of P. aeruginosa increased from 52.38% before coating to 96.37% at the end of the coating process. Regarding E.coli microbial cell viability inhibition, LBCM powders and AgNPs-coated LBCM powders were found to inhibit E. coli growth by 68.35% and 100%, respectively. (c) 2023 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
dc.identifier.doi10.1016/j.jiec.2023.08.018
dc.identifier.endpage541
dc.identifier.issn1226-086X
dc.identifier.issn1876-794X
dc.identifier.scopus2-s2.0-85171762137
dc.identifier.scopusqualityQ1
dc.identifier.startpage532
dc.identifier.urihttps://doi.org/10.1016/j.jiec.2023.08.018
dc.identifier.urihttps://hdl.handle.net/20.500.13099/2050
dc.identifier.volume128
dc.identifier.wosWOS:001114962700001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier Science Inc
dc.relation.ispartofJournal of Industrial and Engineering Chemistry
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250316
dc.subjectLeonardite basalt composite
dc.subjectAgNPs coating
dc.subjectAntimicrobial
dc.subjectE. coli inhibition
dc.subjectAntimicrobial surface
dc.titleFabrication of Ag nanoparticles coated leonardite basalt ceramic membrane with improved antimicrobial properties for DNA cleavage, E. coli removal and antibiofilm effects
dc.typeArticle

Dosyalar