Convergence of measurable functions in the sense of density

dc.contributor.authorAltinok, Maya
dc.contributor.authorKucukaslan, Mehmet
dc.contributor.authorUnay, A. Kerem
dc.date.accessioned2025-03-17T12:27:27Z
dc.date.available2025-03-17T12:27:27Z
dc.date.issued2023
dc.departmentTarsus Üniversitesi
dc.description.abstractIn this paper, by using unbounded modulus function the notion mu(f)-density for measurable subsets of I = [1, infinity] is defined and related notion mu f-statistical convergence of measurable functions is investigated. In addition to the basic properties of mu(f)-density and mu(f)-statistical convergence, the definition of being mu(f)-Cauchy is given and it is shown that these two concepts are equivalent for real valued measurable functions. Among others, the notion of f-strongly Cesaro summability is introduced. Finally, necessary and sufficient conditions between f-strongly Cesaro summability and mu(f)-statistical convergence are given under explicated restrictions on measurable function and modulus function.
dc.identifier.doi10.1007/s41478-022-00529-4
dc.identifier.endpage1510
dc.identifier.issn0971-3611
dc.identifier.issn2367-2501
dc.identifier.issue2
dc.identifier.scopusqualityQ2
dc.identifier.startpage1487
dc.identifier.urihttps://doi.org/10.1007/s41478-022-00529-4
dc.identifier.urihttps://hdl.handle.net/20.500.13099/2269
dc.identifier.volume31
dc.identifier.wosWOS:000896445900001
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.language.isoen
dc.publisherSpringernature
dc.relation.ispartofJournal of Analysis
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250316
dc.subjectConvergence
dc.subjectStatistical convergence
dc.subjectMeasurable functions
dc.subjectModulus function
dc.titleConvergence of measurable functions in the sense of density
dc.typeArticle

Dosyalar