Boron-based magnesium diboride nanosheets preparation and tested for antimicrobial properties for PES membrane
Yükleniyor...
Dosyalar
Tarih
2023
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier
Erişim Hakkı
info:eu-repo/semantics/restrictedAccess
Özet
Antimicrobial resistance to antibiotics for current bacterial infection treatments is a medical problem. 2D nanoparticles, which can be used as both antibiotic carriers and direct antibacterial agents due to their large surface areas and direct contact with the cell membrane, are important alternatives in solving this problem. This study focuses on the effects of a new generation borophene derivative obtained from MgB2 particles on the antimicrobial activity of polyethersulfone membranes. MgB2 nanosheets were created by mechanically separating magnesium diboride (MgB2) particles into layers. The samples were microstructurally characterized using SEM, HR-TEM, and XRD methods. MgB2 nanosheets were screened for various biological activities such as antioxidant, DNA nuclease, antimicrobial, microbial cell viability inhibition, and antibiofilm activities. The antioxidant activity of nanosheets was 75.24 ± 4.15% at 200 mg/L. Plasmid DNA was entirely degraded at 125 and 250 mg/L nanosheet concentrations. MgB2 nanosheets exhibited a potential antimicrobial effect against tested strains. The cell viability inhibitory effect of the MgB2 nanosheets was 99.7 ± 5.78%, 99.89 ± 6.02%, and 100 ± 5.84% at 12.5 mg/L, 25 mg/L, and 50 mg/L, respectively. The antibiofilm activity of MgB2 nanosheets against S. aureus and P. aeruginosa was observed to be satisfactory. Furthermore, a polyethersulfone (PES) membrane was prepared by blending MgB2 nanosheets from 0.5 wt to 2.0 wt %. Pristine PES membrane also has shown the lowest steady-state fluxes at 30.1 ± 2.1 and 56.6 L/m2h for BSA and E. coli, respectively. With the increase of MgB2 nanosheets amount from 0.5 to 2.0 wt%, steady-state fluxes increased from 32.3 ± 2.5 to 42.0 ± 1.0 and from 15.6 ± 0.7 to 24.1 ± 0.8 L/m2h, respectively for BSA and E. coli. E. coli elimination performance of PES membrane coated with MgB2 nanosheets at different rates and the membrane filtration procedure was obtained from 96% to 100%. The results depicted that BSA and E. coli rejection efficiencies of MgB2 nanosheets blended PES membranes increased when compared to pristine PES membranes.
Açıklama
Anahtar Kelimeler
Magnesium diboride, MgB2 nanosheets, Composite PES membrane, BSA separation
Kaynak
Chemosphere
WoS Q Değeri
Q1
Scopus Q Değeri
Cilt
339
Sayı
Künye
Kucukosman, R. Işık, Z., Ocakoglu, K., Dizge, N., Özdemir, S., Yalçın, S.M., Sharma, P. ve Balakrishnan, D. (2023). Boron-based magnesium diboride nanosheets preparation and tested for antimicrobial properties for PES membrane, Chemosphere, 339. Erişim adresi: https://doi.org/10.1016/j.chemosphere.2023.139340