Solar light driven photoelectrochemical water splitting using Mn-doped CdS quantum dots sensitized hierarchical rosette-rod TiO2 photoanodes

dc.authoridKardas, Gulfeza/0000-0002-7871-6303
dc.authoridtezcan, fatih/0000-0001-7656-3529
dc.contributor.authorAhmad, Abrar
dc.contributor.authorTezcan, Fatih
dc.contributor.authorYerlikaya, Gurbet
dc.contributor.authorZia-ur-Rehman
dc.contributor.authorPaksoy, Halime
dc.contributor.authorKardas, Gulfeza
dc.date.accessioned2025-03-17T12:27:04Z
dc.date.available2025-03-17T12:27:04Z
dc.date.issued2022
dc.departmentTarsus Üniversitesi
dc.description.abstractHerein we investigated the photoelectrochemical performance of manganese (Mn) doped cadmium sulfide (CdS) quantum dots (QDs) decorated onto the surface of hierarchical double-layered rosette-rod titanium dioxide (TiO2) photoanode. The rosette-rod TiO2 architectures are synthesized by two steps hydrothermal process while Mn-doped CdS QDs deposition is taken out by successive ionic layer adsorption and reaction (SILAR) approach. Two different kinds of structures exist simultaneously in rosette-rod TiO2, one-dimensional TiO2 nanorod arrays present at the bottom, while the upper three-dimensional nano rosette consists of small TiO2 nanorods as building units. Photoelectrochemical performance of the as-prepared photoanodes are explored in terms of photocurrent density and applied biased to photon conversion efficiency by varying Mn concentration and the number of SILAR cycles to find the best performing photoanodes. Linear sweep voltammetry results show that 35 mM shows the maximum photo-current density of 2.12 mA cm(-2) at 1.23 VRHE with a maximum photoconversion efficiency of similar to 1.61% at 0.4 VRHE, while 8 numbers of SILAR cycles shows the highest photo current-density of 2.73 mA cm(-2) at 1.23 VRHE and maximum photoconversion efficiency of 2.19% at 0.2 V-RHE.
dc.description.sponsorshipCukurova University [FBA-2019-12171]; Scientific and Technological Research Council of Turkey (TUBITAK)
dc.description.sponsorshipThe author greatly acknowledges supports from the Scientific Research Projects Unit (FBA-2019-12171) of Cukurova University and The Scientific and Technological Research Council of Turkey (TUBITAK) 2216 Research fellowship program for foreign citizens) .
dc.identifier.doi10.1016/j.jelechem.2022.116384
dc.identifier.issn1572-6657
dc.identifier.issn1873-2569
dc.identifier.scopus2-s2.0-85129728386
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.jelechem.2022.116384
dc.identifier.urihttps://hdl.handle.net/20.500.13099/2059
dc.identifier.volume916
dc.identifier.wosWOS:000804546600004
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier Science Sa
dc.relation.ispartofJournal of Electroanalytical Chemistry
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250316
dc.subjectRosette-rod TiO2
dc.subjectMn-doped CdS QDs
dc.subjectSILAR
dc.subjectHydrothermal
dc.subjectPhotoanode
dc.titleSolar light driven photoelectrochemical water splitting using Mn-doped CdS quantum dots sensitized hierarchical rosette-rod TiO2 photoanodes
dc.typeArticle

Dosyalar