Assessing the structural and electronic features of C24, B12C12 and Al12C12 fullerenes for the adsorption of methimazole to develop potential drug delivery systems

[ X ]

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

The methimazole (MZOL) adsorption by each of representative C-24, B12C12, and Al12C12 fullerenes was investigated based on density functional theory (DFT) calculations in an attempt for developing drug delivery systems. The quantum chemical calculations suggested successful formations of MZOL & mldr;C-24, MZOL & mldr;B12C12, and MZOL & mldr;Al12C12 complexes. However, the MZOL drug substance was decomposed in the MZOL & mldr;C-24 system by shifting one hydrogen atom to the fullerene side whereas the original MZOL structure was remained unchanged in the MZOL & mldr;B12C12 and MZOL & mldr;Al12C12 complexes; the MZOL & mldr;B12C12 was the most stable system even in the water and 1-octanol phases. For the formation of complexes, the sulfur atom of MZOL had the significant role in the interactions and a complementary interaction assisted it. By the electronic molecular orbital features, the studied complexes were distinguishable and the role of fullerene was dominant for managing the whole complex system. These results might be used for a fullerene-based nano-carrier drug delivery system.

Açıklama

Anahtar Kelimeler

Controllable drug delivery, DFT, Interaction, Molecular adsorption, Nano-carrier

Kaynak

Computational and Theoretical Chemistry

WoS Q Değeri

Q3

Scopus Q Değeri

Q2

Cilt

1241

Sayı

Künye