Diazonium-Based Covalent Molecular Wiring of Single-LayerGraphene Leads to Enhanced Unidirectional PhotocurrentGeneration through the p-doping Effect

[ X ]

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Amer Chemical Soc

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Development of robust and cost-effective smart materials requiresrational chemical nanoengineering to provide viable technological solutions for awide range of applications. Recently, a powerful approach based on theelectrografting of diazonium salts has attracted a great deal of attention due to itsnumerous technological advantages. Several studies on graphene-based materialsreveal that the covalent attachment of aryl groups via the above approach could leadto additional beneficial properties of this versatile material. Here, we developed thecovalently linked metalorganic wires on two transparent, cheap, and conductivematerials:fluorine-doped tin oxide (FTO) and FTO/single-layer graphene (FTO/SLG). The wires are terminated with nitrilotriacetic acid metal complexes, whichare universal molecular anchors to immobilize His6-tagged proteins, such asbiophotocatalysts and other types of redox-active proteins of great interest inbiotechnology, optoelectronics, and artificial photosynthesis. We show for thefirsttime that the covalent grafting of a diazonium salt precursor on two differentelectron-rich surfaces leads to the formation of the molecular wires that promote p-doping of SLG concomitantly with a significantlyenhanced unidirectional cathodic photocurrent up to 1 mu Acm-2. Density functional theory modeling reveals that the exceptionallyhigh photocurrent values are due to two distinct mechanisms of electron transfer originating from different orbitals/bands of thediazonium-derived wires depending on the nature of the chelating metal redox center. Importantly, the novel metalorganic interfacesreported here exhibit minimized back electron transfer, which is essential for the maximization of solar conversion efficiency.

Açıklama

Anahtar Kelimeler

Self-Assembled Monolayers, Indium Tin Oxide, Electron-Transfer Kinetics, Electrochemical Reduction, Carbon Surfaces, Organic Layers, Charge-Transfer, Photosystem-I, Work Function, Metal-Oxides

Kaynak

Chemistry of Materials

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

34

Sayı

8

Künye