Regularization and variable selection with triple shrinkage in linear regression: a generalization of lasso

dc.authoridOzkale, M.Revan/0000-0001-7085-7403
dc.contributor.authorGenc, Murat
dc.contributor.authorOzkale, M. Revan
dc.date.accessioned2025-03-17T12:25:48Z
dc.date.available2025-03-17T12:25:48Z
dc.date.issued2024
dc.departmentTarsus Üniversitesi
dc.description.abstractWe propose a new shrinkage and variable selection method in linear regression, which is based on triple shrinkage on the regression coefficients. The new estimation method contains the ridge, lasso and elastic net as special cases. The term based on the shrunken estimator in the new method can provide estimates with a smaller length depending on the size of a new tuning parameter compared to the elastic net, maintaining the variable selection feature in the case of multicollinearity. The new estimator has the property of the grouping effect similar to that of the elastic net. The well-known coordinate descent algorithm is used to compute the coefficient path of the new estimator, efficiently. We conduct real data analysis and simulation studies to compare the new estimator with several methods including the lasso and elastic net.
dc.identifier.doi10.1080/03610918.2023.2173780
dc.identifier.endpage5264
dc.identifier.issn0361-0918
dc.identifier.issn1532-4141
dc.identifier.issue11
dc.identifier.scopus2-s2.0-85147681539
dc.identifier.scopusqualityQ2
dc.identifier.startpage5242
dc.identifier.urihttps://doi.org/10.1080/03610918.2023.2173780
dc.identifier.urihttps://hdl.handle.net/20.500.13099/1881
dc.identifier.volume53
dc.identifier.wosWOS:000926386600001
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherTaylor & Francis Inc
dc.relation.ispartofCommunications in Statistics-Simulation and Computation
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250316
dc.subjectCoordinate descent algorithm
dc.subjectElastic net
dc.subjectGrouping property
dc.subjectLasso
dc.subjectShrinkage
dc.subjectVariable selection
dc.titleRegularization and variable selection with triple shrinkage in linear regression: a generalization of lasso
dc.typeArticle

Dosyalar