Yazar "Zannou, Oscar" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A comprehensive review of recent development in extraction and encapsulation techniques of betalains(Taylor & Francis Inc, 2024) Zannou, Oscar; Oussou, Kouame F.; Chabi, Ifagbemi B.; Odouaro, Oscar B. O.; Deli, Mahn G. E. P.; Goksen, Gulden; Vahid, Aissi M.Betalains are attractive natural pigments with potent antioxidant activity, mainly extracted from the roots, tubers, leaves, flowers, and fruits of certain plants and some fungi. They constitute a reliable alternative to synthetic dyes used in the food industry and are considered toxic for consumers. In addition, there is convincing evidence of their health benefits for consumers. However, betalains are highly unstable to environment factors, such as light, heat, oxygen, water activity, and pH change which can be degraded during food processing, handling, storage, or delivery. Therefore, newly developed extraction methods and micro/nano-encapsulation techniques are currently applied to enhance the extraction yield, solve their instability problems, and improve their application in the food industry. This article aims to summarize the new advanced extraction methods of betalains, discussing the recent encapsulation techniques concerning the different encapsulating materials utilization. Betalains, natural pigments with potent antioxidant activity, are increasingly extracted from the roots, tubers, leaves, flowers, and fruits of certain plants and some fungi as safe alternatives to synthetic food dyes used in the food industry. However, their susceptibility to degradation during food processing, storage, and delivery poses challenges. Recent developments in extraction methods (e.g., supercritical fluid, pressurized liquid, ultrasound- and microwave-assisted, and enzyme-assisted) enhance betalain recovery, minimizing degradation. Encapsulation techniques using biopolymers, proteins, lipids, and nanoparticles protect betalains from environmental factors, extending shelf life and enabling controlled release. These advancements offer improved extraction efficiency, reduced solvent use, shorter processing times, and enhanced stability. Integration of these techniques in the food industry presents opportunities for incorporating betalains into various products, including functional foods, beverages, and dietary supplements. By addressing stability challenges, these developments support the production of innovative, healthier food items enriched with betalains. This article provides an overview of recent advancements in betalain extraction and encapsulation, highlighting their potential applications in the food industry.Öğe Nanoencapsulation of Cyanidin 3-O-Glucoside: Purpose, Technique, Bioavailability, and Stability(Mdpi, 2023) Zannou, Oscar; Oussou, Kouame F.; Chabi, Ifagbemi B.; Awad, Nour M. H.; Aissi, Midimahu V.; Goksen, Gulden; Mortas, MustafaThe current growing attractiveness of natural dyes around the world is a consequence of the increasing rejection of synthetic dyes whose use is increasingly criticized. The great interest in natural pigments from herbal origin such as cyanidin 3-O-glucoside (C3G) is due to their biological properties and their health benefits. However, the chemical instability of C3G during processing and storage and its low bioavailability limits its food application. Nanoencapsulation technology using appropriate nanocarriers is revolutionizing the use of anthocyanin, including C3G. Owing to the chemical stability and functional benefits that this new nanotechnology provides to the latter, its industrial application is now extending to the pharmaceutical and cosmetic fields. This review focuses on the various nanoencapsulation techniques used and the chemical and biological benefits induced to C3G.Öğe New value chain Pentadesma nuts and butter from West Africa to international markets: Biological activities, health benefits, and physicochemical properties(Wiley, 2024) Chabi, Ifagbemi Bienvenue; Aissi, Midimahu Vahid; Zannou, Oscar; Kpoclou, Yenoukounme E.; Ayegnon, Bernolde Paul; Badoussi, Marius Eric; Ballogou, Venerande Y.The tallow or butter tree (Pentadesma butyracea Sabine) is a ligneous forest species of multipurpose use largely distributed in Sub-Sahara Africa. Owing to the biological properties of different parts of the tree and physicochemical properties, as well as the numerous benefits of its fruits, research on P. butyracea products, especially kernels and butter, has now gained more interest. Thus, the scientific literature revealed that Pentadesma butter is a more promising product with good physical and technological characteristics. It is traditionally preferred in households for food, medicine, and cosmetic use. Apart from the fruits, all other parts of the butter tree are used by local communities in folk medicine. The existing studies indicated that P. butyracea contains valuable health-promoting compounds such as phenolic compounds, vitamins, minerals, and essential fatty acids. P. butyracea and derived products have antioxidant, antimicrobial, anti-inflammatory, antiplasmodial, antitumor, estrogenic, anti-androgenic, and cholesterol-regulative effects. Since studies on the biological properties of the tree parts, nutritional composition, and physicochemical properties of food products from the tree have been very limited, this review attempts to summarize some results from recent investigations. Our intention in the present review was to give an overview of the biological activities of plants and an account of the potential properties of Pentadesma products (pulp, kernels, and butter) and outline the way for future relevant research to improve their state of knowledge.Öğe Truths and myths about superfoods in the era of the COVID-19 pandemic(Taylor & Francis Inc, 2024) Hassoun, Abdo; Harastani, Rania; Jagtap, Sandeep; Trollman, Hana; Garcia-Garcia, Guillermo; Awad, Nour M. H.; Zannou, OscarNowadays, during the current COVID-19 pandemic, consumers increasingly seek foods that not only fulfill the basic need (i.e., satisfying hunger) but also enhance human health and well-being. As a result, more attention has been given to some kinds of foods, termed superfoods, making big claims about their richness in valuable nutrients and bioactive compounds as well as their capability to prevent illness, reinforcing the human immune system, and improve overall health. This review is an attempt to uncover truths and myths about superfoods by giving examples of the most popular foods (e.g., berries, pomegranates, watermelon, olive, green tea, several seeds and nuts, honey, salmon, and camel milk, among many others) that are commonly reported as having unique nutritional, nutraceutical, and functional characteristics. While superfoods have become a popular buzzword in blog articles and social media posts, scientific publications are still relatively marginal. The reviewed findings show that COVID-19 has become a significant driver for superfoods consumption. Food Industry 4.0 innovations have revolutionized many sectors of food technologies, including the manufacturing of functional foods, offering new opportunities to improve the sensory and nutritional quality of such foods. Although many food products have been considered superfoods and intensively sought by consumers, scientific evidence for their beneficial effectiveness and their superpower are yet to be provided. Therefore, more research and collaboration between researchers, industry, consumers, and policymakers are still needed to differentiate facts from marketing gimmicks and promote human health and nutrition.