Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Tekgul, Atakan" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Influence of silane coating and graphene oxide integration on the magnetothermal Behaviors of La1-xSrxMnO3 nanoparticles
    (Elsevier, 2025) Sert, Buse; Kaya, Gul; Cicek, Sinem; Harputlu, Ersan; Simsek, Telem; Tekgul, Atakan; Unlu, C. Gokhan
    In this study, La1-xSrxMnO3 (x = 0.27, 0.3, 0.33) magnetic nanoparticles (MNPs) were synthesized and then these nanoparticles synthesized in the core-shell structure were coated with silane for potential magnetic hyperthermia applications. In order to provide support material for the coated magnetic nanoparticles, silane-coated hybrid magnetic nanoparticles were obtained by producing graphene oxide (GO) nanoflakes. The structural and magnetic properties and magnetothermal properties of these structures were investigated. It was observed that the structure of the silane-coated magnetic nanoparticles remained intact and did not show any degradation compared to the uncoated materials. In addition, the highest saturation magnetization (MS) value was observed in the sample doped with x = 0.30. This value indicated that the heating power would be higher than the other doped samples in the specific absorption ratio (SAR) measurements. In this context, the heating amount in the silane-coated samples showed a slight decrease compared to the uncoated samples. Despite the decrease in the SAR values of the integrated samples by incorporating GO into the coated MNPs, it is anticipated that effective results will be obtained for practical applications with the advantage of increasing the thermal conductivity of GO.
  • [ X ]
    Öğe
    Synthesis and characterization of perovskite type of La1-xBaxMnO3 nanoparticles with investigation of biological activity
    (Elsevier, 2022) Gonca, Serpil; ozdemir, Sadin; Tekgul, Atakan; Unlu, Cumhur Gokhan; Ocakoglu, Kasim; Dizge, Nadir
    The enhanced biological activity of perovskite type La1-xBaxMnO3 (x = 0.2, 0.3, 0.4) nanoparticle was studied based on antioxidant, antimicrobial, anti-biofilm, bacterial viability inhibition, and DNA cleavage studies. The nanoparticles were prepared by Sol-gel technique and they were analyzed on structure and morphological by XRD and SEM. La0.6Ba0.4MnO3 showed the highest DPPH free radical scavenging activity and iron chelating activity as 67.23% and 46.54%, respectively. All tested lanthanum nanoparticles showed good chemical nuclease activity. C. tropicalis was the most affected species by lanthanum nanoparticles and MIC values were 4 mu g/mL, 8 mu g/mL, and 16 mu g/mL for La0.7Ba0.4MnO3, La0.6Ba0.4MnO3, and La0.8Ba0.2MnO3, respectively. La0.7Ba0.4MnO3 exhibited the highest percentage of biofilm inhibition against P. aeruginosa and S. aureus as 99.78% and 98.38%, respectively. Cell viability assay demonstrated that La0.7Ba0.4MnO3, La0.6Ba0.4MnO3, and La0.8Ba0.2MnO3 showed %100 cell viability inhibition after 30 and 60 min treatment. (C) 2021 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.

| Tarsus Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Tarsus Üniversitesi, Mersin, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim