Yazar "Subramanyam, Anirudh" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Joint routing of conventional and range-extended electric vehicles in a large metropolitan network(Pergamon-Elsevier Science Ltd, 2022) Subramanyam, Anirudh; Cokyasar, Taner; Larson, Jeffrey; Stinson, MoniqueRange-extended electric vehicles combine the higher efficiency and environmental benefits of battery-powered electric motors with the longer mileage and autonomy of conventional internal combustion engines. This combination is particularly advantageous for time-constrained delivery routing in dense urban areas, where battery recharging along routes can be too time-consuming to economically justify the use of all-electric vehicles. However, switching from electric to conventional fossil fuel modes also results in higher costs and emissions and lower efficiency. This paper analyzes this heterogeneous vehicle routing problem and describes two solution methods: an exact branch-price-and-cut algorithm and an iterated tabu search metaheuristic. From a methodological perspective, we find that the exact algorithm consistently obtains tight lower bounds that also serve to certify the metaheuristic solutions as near-optimal. From a policy standpoint, we examine a large-scale real-world case study concerning parcel deliveries in the Chicago metropolitan area and quantify various operational metrics including energy costs and vehicle miles traveled. We find that by deploying roughly 20% of range -extended vehicles with a modest all-electric range of 33 miles, parcel distributors can save energy costs by up to 17% while incurring less than 0.5% increase in vehicle miles traveled. Increasing the range to 60 miles further reduces costs by only 4%, which can alternatively be achieved by decreasing the average service time by 1 minute or increasing driver working time by 1 hour. Our study reveals several key areas of improvement on which vehicle manufacturers, distributors, and policy makers can focus their attention.Öğe Time-Constrained Capacitated Vehicle Routing Problem in Urban E-Commerce Delivery(Sage Publications Inc, 2023) Cokyasar, Taner; Subramanyam, Anirudh; Larson, Jeffrey; Stinson, Monique; Sahin, OlcayElectric vehicle routing problems can be particularly complex when recharging must be performed mid-route. In some applications, such as e-commerce parcel delivery truck routing, however, mid-route recharging may not be necessary because of constraints on vehicle capacities and the maximum allowed time for delivery. In this study, we develop a mixed-integer optimization model that exactly solves such a time-constrained capacitated vehicle routing problem, especially of interest for e-commerce parcel delivery vehicles. We compare our solution method with an existing metaheuristic and carry out exhaustive case studies considering four U.S. cities-Austin, TX; Bloomington, IL; Chicago, IL; and Detroit, MI-and two vehicle types: conventional vehicles and battery electric vehicles (BEVs). In these studies we examine the impact of vehicle capacity, maximum allowed travel time, service time (dwelling time to physically deliver the parcel), and BEV range on system-level performance metrics, including vehicle miles traveled (VMT). We find that the service time followed by the vehicle capacity plays a key role in the performance of our approach. We assume an 80-mi BEV range as a baseline without mid-route recharging. Our results show that the BEV range has a minimal impact on performance metrics because the VMT per vehicle averages around 72 mi. In a case study for shared-economy parcel deliveries, we observe that VMT could be reduced by 38.8% in Austin if service providers were to operate their distribution centers jointly.