Yazar "Schneider, Marc" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Gelatin nanoparticles with tunable mechanical properties: effect of crosslinking time and loading(Beilstein-Institut, 2022) Weiss, Agnes -Valencia; Schorr, Daniel; Metz, Julia K.; Yildirim, Metin; Khan, Saeed Ahmad; Schneider, MarcTuning the elastic properties of nanoparticles intended to be used in drug delivery is of great interest. To this end, different poten-tial formulations are developed since the particle elasticity is affecting the in vitro and in vivo performance of the nanoparticles. Here we present a method to determine the elasticity of single gelatin nanoparticles (GNPs). Furthermore, we introduce the possi-bility of tuning the elastic properties of gelatin nanoparticles during their preparation through crosslinking time. Young's moduli from 5.48 to 14.26 MPa have been obtained. Additionally, the possibility to measure the elasticity of single nanoparticles revealed the influence of loading a macromolecular model drug (FITC-dextran) on the mechanical properties, which decreased with raising amounts of loaded drug. Loaded particles were significantly softer, with Young's moduli between 1.06 and 5.79 MPa for the same crosslinking time, than the blank GNPs. In contrast to this, lysozyme as a crosslinkable macromolecule did not influence the me-chanical properties. A good in vitro cell compatibility was found investigating blank GNPs and FITC-dextran-loaded GNPs in viability assays with the cancer cell line A549 and the human primary cell-derived hAELVi cell line.Öğe The Effect of Elasticity of Gelatin Nanoparticles on the Interaction with Macrophages(Mdpi, 2023) Yildirim, Metin; Weiss, Agnes-Valencia; Schneider, MarcGelatin is a biocompatible, biodegradable, cheap, and nontoxic material, which is already used for pharmaceutical applications. Nanoparticles from gelatin (GNPs) are considered a promising delivery system for hydrophilic and macromolecular drugs. Mechanical properties of particles are recognized as an important parameter affecting drug carrier interaction with biological systems. GNPs offer the preparation of particles with different stiffness. GNPs were loaded with Fluorescein isothiocyanate-labeled 150 kDa dextran (FITC-dextran) yielding also different elastic properties. GNPs were visualized using atomic force microscopy (AFM), and force-distance curves from the center of the particles were evaluated for Young's modulus calculation. The prepared GNPs have Young's moduli from 4.12 MPa for soft to 9.8 MPa for stiff particles. Furthermore, cytokine release (IL-6 and TNF-alpha), cell viability, and cell uptake were determined on macrophage cell lines from mouse (RAW 264.7) and human (dTHP-1 cells, differentiated human monocytic THP-1 cells) origin for soft and stiff GNPs. Both particle types showed good cell compatibility and did not induce IL-6 and TNF-alpha release from RAW 264.7 and dTHP-1 cells. Stiffer GNPs were internalized into cells faster and to a larger extent.