Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Rose, Pawan Kumar" seçeneğine göre listele

Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Effect of Different Processing Techniques and Storage Conditions on Honey Properties
    (Springer Nature, 2024) Rani, Jyoti; Kamboj, Harkrishan; Dhull, Sanju Bala; Rose, Pawan Kumar; Bou-Mitri, Christelle; Goksen, Gulden; Faliarizao, Natoavina
    Honey is a naturally occurring biological product produced by bees using the nectar of plants and is extremely beneficial to humans both as a food and medication. It is a good source of water, glucose, and fructose, including trace amounts of proteins, vitamins, minerals, and organic acids. Raw or minimally processed honey is a high-quality honey offering several nutritional and health preventative benefits but could be microbiologically contaminated due to yeasts, some anaerobic bacteria, Clostridium botulinum, and molds. Moreover, processing could be required to meet physical and sensorial requirements. In addition, heating, filtering, and moisture reduction are all necessary processes for raw honey processing to avoid fermentation, delay crystallization, and eliminate contaminants. During processing, it is a challenge to maintain its nutritional value and health properties and to improve product appeal. Various methods have been employed for honey processing as alternatives to conventional heat treatments, such as microwave heating, ultrasound processing, infrared heating, high hydrostatic pressure processing, and membrane technology. The chapter covers the composition of honey, the nutritional value of its components, conventional and modern processing methods of honey, and their effect on its physiological and nutritional characteristics. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.
  • [ X ]
    Öğe
    Exploring the Potential and Properties of Lotus (Nelumbo nucifera G.) Starches in Comparison With Conventional Starches for Food and Non-Food Applications
    (John Wiley and Sons Inc, 2025) Chandak, Ankita; Dhull, Sanju Bala; Chawla, Prince; Alarfaj, Abdullah A.; Alharbi, Sulaiman Ali; Ansari, Mohammad Javed; Rose, Pawan Kumar
    In the present study, a comparative characterization of starch isolated from lotus seeds and lotus rhizomes was compared with mung bean starch (MBS) and potato starch (PS). The characterization of isolated starches was done based on physicochemical, pasting, morphological, structural, thermal, and rheological properties. Amylose content (AC) was observed the highest for lotus seed starch (LS) while it was the lowest for lotus rhizome starch (LRS). At 90°C, the swelling power was observed the highest for PS, that is, 26.86 g/g whereas it was the lowest for MBS, that is, 12.75 g/g. MBS starch showed the highest solubility (20.7%). The scanning electron micrographs of starches showed granules varying in shape and size from round to irregular, oval to elliptical shapes, and small to large sizes. The x-ray diffraction polymorph of LRS, LS, and MBS demonstrated A-type, whereas PS exhibited B-type. Peak, trough, and breakdown viscosities were observed to be the highest for PS. PS had the lowest pasting temperature, while the highest was observed for LS. MBS and PS showed higher transition temperatures than LS and LRS. Therefore, MBS and PS can be exploited further for applications involving high processing temperatures. The enthalpy of gelatinization is highest for MBS and the lowest for LS. Frequency sweep measurement of starch pastes showed G′ and G″ values varying between 216 - 2749 Pa and 86.6–228.2 Pa, respectively. This study indicated that starches of lotus have good AC, small granular size, and have potential to promote the development of products in food and non-food industries. Overall, the present finding will encourage the utilization of starches extracted from the seed and rhizome of lotus for food and non-food industries and potentially guide future studies on starch modifications and novel utilization. © 2025 Wiley-VCH GmbH.
  • [ X ]
    Öğe
    Food waste to hydrochar: A potential approach towards the Sustainable Development Goals, carbon neutrality, and circular economy
    (Elsevier Science Sa, 2024) Dhull, Sanju Bala; Rose, Pawan Kumar; Rani, Jyoti; Goksen, Gulden; Bains, Aarti
    Food waste is a common organic solid waste generated worldwide in significant quantities, and its proper treatment and management practices are hindered by high moisture content. However, hydrothermal carbonization (HTC) technique uses food waste moisture as the reaction medium and converts it into an environmentally friendly coal -like product, i.e. hydrochar. Food waste conversion to hydrochar via HTC has many benefits but a complex mechanism because each component of food waste has its own structural and chemical properties and interacts with the other components/chemical species during the process involving heterogeneous reactions, which significantly impacts the physio-chemical properties of food waste hydrochar (FWH). Due to high surface area, stability, carbon content, and regeneration capability, FWH is an attractive choice for numerous environmental applications, helps to achieve various Sustainable Development Goals (SDGs), and supports carbon neutrality and a circular economy. Given the importance of this topic, this review provides a comprehensive analysis of the advancements in HTC technology for producing hydrochar from food waste, as well as the carbonization mechanism of each constituent of food waste. The study also highlights the significance of different modification and activation methods used to enhance the primary drawback of FWH. We primarily intend to assess the application of FWH in accomplishing several SDGs, i.e., SDG 6.3 (pollutant removal from wastewater), SDG 7 (generate clean energy), SDG 13 (combat climate change, i.e., CO 2 sequestration), SDG 15.3 (land and soil restoration). Our primary focus is to evaluate the future perspective of FWH via CO 2 emission assessment, life cycle assessment, and techno-economic assessment, along with challenges in commercializing FWH, and propose significant avenues for future research. These insights are essential for determining the economic viability and environmental advantages of FWH as a valuable resource to accomplish several SDGs, achieve carbon neutrality, and promote a circular economy.
  • [ X ]
    Öğe
    Lotus (Nelumbo nucifera G.) seed starch: Understanding the impact of physical modification sequence (ultrasonication and HMT) on properties and in vitro digestibility
    (Elsevier, 2024) Chandak, Ankita; Dhull, Sanju Bala; Chawla, Prince; Goksen, Gulden; Rose, Pawan Kumar; Al Obaid, Sami; Ansari, Mohammad Javed
    Native lotus ( Nelumbo nucifera G.) seed starch (LSS) was single- and dual-modified by heat-moisture treatment (HMT), ultrasonication (US), HMT followed by the US (HMT-US), and the US followed by HMT (US-HMT). The modified lotus seed starch (LSS) was evaluated for its physicochemical, pasting, thermal, and rheological properties and in vitro digestibility. All treatments decreased the swelling power (10.52-14.0 g/g), solubility (12.20-15.95 %), and amylose content (23.71-25.67 %) except for ultrasonication (17.67 g/g, 17.90 %, 29.09 %, respectively) when compared with native LSS (15.05 g/g, 16.12 %, 27.12 %, respectively). According to the rheological study, G ' ' (1665-4004 Pa) was greater than G '' '' (119-308 Pa) for all LSS gel samples demonstrating their elastic character. Moreover, gelatinization enthalpy (17.56-16.05 J/g) increased in all treatments compared to native LSS (15.38 J/g). Ultrasonication treatment improved the thermal stability of LSS. The digestibility results showed that dual modification using HMT and US significantly enhanced resistant starch (RS) and reduced slowly digestible starch (SDS) in LSS. Cracks were observed on the surface of the modified LSS granules. Peak viscosity decreased in all modified starches except for ultrasonication, suggesting their resistance to shear-thinning during cooking, making them ideal weaning food components. The results obtained after different modifications in this study could be a useful ready reference to select appropriate modification treatments to produce modified LSS with desired properties depending on their end-use.
  • [ X ]
    Öğe
    Modifications of native lotus (Nelumbo nucifera G.) rhizome starch and its overall characterization: A review
    (Elsevier, 2023) Dhull, Sanju Bala; Chandak, Ankita; Chawla, Prince; Goksen, Gulden; Rose, Pawan Kumar; Rani, Jyoti
    Lotus (Nelumbo nucifera G.) rhizomes are an under-utilized and sustainable starch source that constitutes up to 20 % starch. The review mainly focused on the extraction methods of starch, the chemical composition of LRS, and techno-functional characteristics such as swelling power, solubility, in vitro digestibility, pasting property, and gelatinization is highlighted in LRS review. Lotus rhizome starch (LRS) is also used as a water retention agent, thickening, gelling, stabilizing, and filling in food and non-food applications. Native starch has limited functional characteristics in food applications so by modifying the starch, functional characteristics are enhanced. Single and dual treatment processes are available to enhance microstructural properties, resistant starch, techno-functional, morphological, and, film-forming properties. Compared with other starch sources, there is a lack of systematic information on the LRS. Many industries are interested in developing food products based on starch such as nanoparticles, hydrogels, edible films, and many others. Additionally, there are several recommendations to improve the applications in the food industry. Finally, we provide an outlook on the future possibility of LRS.

| Tarsus Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Tarsus Üniversitesi, Mersin, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim