Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Pelit, Fusun" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    A novel approach utilizing rapid thin-film microextraction method for salivary metabolomics studies in lung cancer diagnosis
    (Elsevier, 2024) Pelit, Fusun; Erbas, Ilknur; Ozupek, Nazli Mert; Gul, Merve; Sakrak, Esra; Ocakoglu, Kasim; Pelit, Levent
    This study investigated the potential of targeted salivary metabolomics as a convenient diagnostic tool for lung cancer (LC), utilizing a rapid TFME-based method. It specifically examines TFME blades modified with SiO2 nanoparticles, which were produced using a custom-made coating system. Validation of the metabolite biomarker analysis was performed by these blades using liquid chromatography-tandem mass spectroscopy (LCMS/MS). The extraction efficiencies of SiO2 nanoparticle/polyacrylonitrile (PAN) composite-coated blades were compared for 18 metabolites. Response surface methodology (RSM) was used to optimize the analysis conditions. Linear calibration plots were obtained for all metabolites at concentrations between 0.025 to 4.0 mu g/mL in the presence of internal standard, with correlation coefficients (R-2) ranging from 0.9975 to 0.9841. The limit of detection (LOD) and limit of quantitation (LOQ) were in the range of 0.014 to 0.97 mu g mL(-1) and 0.046 to 3.20 mu gmL(-1), respectively. The %RSD values for all analytes were within the acceptable range (less than 20 %) for the proposed method. The method was applied to the saliva samples of 40 patients with LC and 38 healthy controls. The efficacy of metabolites for LC diagnosis was determined by in silico methods and the results reveal that phenylalanine and purine metabolism metabolites (e.g., hypoxanthine) are of great importance for LC diagnosis. Furthermore, potentially significant biomarker analysis results from the ROC curve data reveal that proline, hypoxanthine, and phenylalanine were identified as potential biomarkers for LC diagnosis.

| Tarsus Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Tarsus Üniversitesi, Mersin, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim