Yazar "Ozkale, M. Revan" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Lasso regression under stochastic restrictions in linear regression: An application to genomic data(Taylor & Francis Inc, 2024) Genc, Murat; Ozkale, M. RevanVariable selection approaches are often employed in high-dimensionality and multicollinearity problems. Since lasso selects variables by shrinking the coefficients, it has extensive use in many fields. On the other, we may sometime have extra information on the model. In this case, the extra information should be considered in the estimation procedure. In this paper, we propose a stochastic restricted lasso estimator in linear regression model which uses the extra information as stochastic linear restrictions. The estimator is a generalization of mixed estimator with L-1 type penalization. We give the coordinate descent algorithm to estimate the coefficient vector of the proposed method and strong rules for the coordinate descent algorithm to discard variables from the model. Also, we propose a method to estimate the tuning parameter. We conduct two real data analyses and simulation studies to compare the new estimator with several estimators including the ridge, lasso and stochastic restricted ridge. The real data analyses and simulation studies show that the new estimator enjoys the automatic variable selection property of the lasso while outperforms standard methods, achieving lower test mean squared error.Öğe Regularization and variable selection with triple shrinkage in linear regression: a generalization of lasso(Taylor & Francis Inc, 2024) Genc, Murat; Ozkale, M. RevanWe propose a new shrinkage and variable selection method in linear regression, which is based on triple shrinkage on the regression coefficients. The new estimation method contains the ridge, lasso and elastic net as special cases. The term based on the shrunken estimator in the new method can provide estimates with a smaller length depending on the size of a new tuning parameter compared to the elastic net, maintaining the variable selection feature in the case of multicollinearity. The new estimator has the property of the grouping effect similar to that of the elastic net. The well-known coordinate descent algorithm is used to compute the coefficient path of the new estimator, efficiently. We conduct real data analysis and simulation studies to compare the new estimator with several methods including the lasso and elastic net.