Yazar "Onishchenko, Anatolii" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Antibacterial and antioxidant activity of gold and silver nanoparticles in dextran–polyacrylamide copolymers(Springer Link, 2024) Tkachenko, Anton; Özdemir, Sadin; Tollu, Gülşah; Dizge, Nadir; Ocakoglu, Kasım; Prokopiuk, Volodymyr; Onishchenko, Anatolii; ?humachenko, Vasyl; Virych, Pavlo; Pavlenko, Vadym; Kutsevol, NataliyaSearch for new antimicrobial agents is of great significance due to the issue of antimicrobial resistance, which nowadays has become more important than many diseases. The aim of this study was to evaluate the toxicity and biological effects of a dextran-graft-polyacrylamide (D-PAA) polymer-nanocarrier with/without silver or gold nanoparticles (AgNPs/D-PAA and AuNPs/D-PAA, respectively) to analyze their potential to replace or supplement conventional antibiotic therapy. The toxicity of nanocomplexes against eukaryotic cells was assessed on primary dermal fibroblasts using scratch, micronucleus and proliferation assays. DPPH (2,2-diphenyl-1-picrylhydrazylradical) assay was used to evaluate the antioxidant capacity of D-PAA, AgNPs/D-PAA and AuNPs/D-PAA. DNA cleavage, antimicrobial and biofilm inhibition effects of nanocomplexes were investigated. Nanocomplexes were found to be of moderate toxicity against fibroblasts with no genotoxicity observed. AgNPs/D-PAA reduced motility and proliferation at lower concentrations compared with the other studied nanomaterials. AgNPs/D-PAA and AuNPs/D-PAA showed radical scavenging capacities in a dose-dependent manner. The antimicrobial activity of AgNPs/D-PAA against various bacteria was found to be much higher compared to D-PAA and AuNPs/D-PAA, especially against E. hirae, E. faecalis and S. aureus, respectively. D-PAA, AgNPs/D-PAA and AuNPs/D-PAA showed DNA-cleaving and biofilm inhibitory activity, while AgNPs/D-PAA displayed the highest anti-biofilm activity. AgNPs/D-PAA and AuNPs/D-PAA were characterized by good antimicrobial activity. According to the findings of the study, AgNPs/D-PAA and AuNPs/D-PAA can be evaluated as alternatives for the preparation of new antimicrobial agents, the fight against biofilms, sterilization and disinfection processes. Our findings confirm the versatility of nanosystems based on dextran-polyacrylamide polymers and indicate that AgNPs/D-PAA and AuNPs/D-PAA can be evaluated as alternatives for the preparation of novel antimicrobial agents.Öğe Antimicrobial activity and cytotoxicity study of cerium oxide nanoparticles with two different sizes(Wiley, 2023) Yefimova, Svetlana; Klochkov, Vladimir; Kavok, Nataliya; Tkachenko, Anton; Onishchenko, Anatolii; Chumachenko, Tatyana; Dizge, NadirThe control over bacterial diseases requires the development of novel antibacterial agents. The use of antibacterial nanomedicines is one of the strategies to tackle antibiotic resistance. The study was designed to assess the antimicrobial activity of cerium oxide (CeO2) nanoparticles (NP) of two different sizes (CeO2 NP1 [1-2 nm] and CeO2 NP2 [10-12 nm]) and their cytotoxicity towards eukaryotic cells. The antimicrobial activity, effects of nanoparticles on DNA cleavage, microbial cell viability, and biofilm formation inhibition were analyzed. The impact of cerium oxide nanoparticles on eryptosis of erythrocytes was estimated using annexin V staining by flow cytometry. The newly synthesized CeO2 NP1 and CeO2 NP2 displayed moderate antimicrobial activities. CeO2 NP1 and CeO2 NP2 exhibited single-strand DNA cleavage ability. CeO2 NPs were found to show 100% microbial cell viability inhibition at a concentration of 500 mg/L. In addition, CeO2 NP1 and CeO2 NP2 inhibited the biofilm formation of S. aureus and P. aeruginosa. Larger cerium oxide nanoparticles were found to be less toxic against erythrocytes compared with the smaller ones. CeO2 nanoparticles demonstrate moderate antimicrobial activity and low cytotoxicity towards erythrocytes, which make them promising antibacterial agents.Öğe Experimental confirmation of antimicrobial effects of GdYVO4:Eu3+ nanoparticles(Taylor & Francis Ltd, 2021) Gonca, Serpil; Ozdemir, Sadin; Yefimova, Svetlana; Tkachenko, Anton; Onishchenko, Anatolii; Klochkov, Vladimir; Kavok, NataliyaNanotechnology can be applied to design antibacterial agents to combat antibiotic resistance. The aim of the present study was to assess the antimicrobial effects and cytotoxicity of GdYVO4:Eu3+ nanoparticles (NPs). Biofilm inhibition activity, antimicrobial activity, bacterial viability inhibition and DNA cleavage activity of GdYVO4:Eu3+ NPs were studied. In addition, the impact of GdYVO4:Eu3+ NPs on the mitochondrial membrane potential (Delta psi(M)) of host immune cells and, hence, their apoptosis was analyzed by JC-1 staining using flow cytometry. GdYVO4:Eu3+ NPs demonstrated good antimicrobial, cell viability inhibition and DNA cleavage activities. In addition, GdYVO4:Eu3+ NPs showed good biofilm inhibition activity against S. aureus and P. aeruginosa and inhibition percentages were 89.15% and 79.54%, respectively. However, GdYVO4:Eu3+ NPs promoted mitochondrial depolarization and apoptosis of leukocytes at high concentrations. GdYVO4:Eu3+ nanoparticles are promising antibacterial agents. However, more efforts should be exerted to ensure their safety.Öğe Toxicity, Antibacterial, Antioxidant, Antidiabetic, and DNA Cleavage Effects of Dextran-Graft-Polyacrylamide/Zinc Oxide Nanosystems(Springer, 2024) Yalcin, M. Serkan; Ozdemir, Sadin; Prokopiuk, Volodymyr; Virych, Pavlo; Onishchenko, Anatolii; Tollu, Gulsah; Pavlenko, VadimSynthesis of metal oxide nanoparticles-polymer nanocomposites is an emerging strategy in nanotechnology to improve targeted delivery and reduce the toxicity of nanoparticles. In this study, we report biological effects of previously described hybrid nanocomposites containing dextran-graft-polyacrylamide/zinc oxide nanoparticles (D-PAA/ZnO NPs) prepared from zinc sulfate (D-PAA/ZnONPs(SO42-)) and zinc acetate (D-PAA/ZnONPs(-OAc)) focusing primarily on their antimicrobial activity. D-PAA/ZnONPs(SO42-) and D-PAA/ZnONPs(-OAc) nanosystems were tested in a complex way to assess their antioxidant activity (DPPH assay), antidiabetic potential (alpha-amylase inhibition), DNA cleavage activity, antimicrobial, and antibiofilm activity. In addition, the toxicity of D-PAA/ZnONPs(SO42-) and D-PAA/ZnONPs(-OAc) nanosystems against primary murine splenocytes was tested using MTT assay. The studied nanosystems inhibited E.coli growth. For all the investigated strains, minimum inhibitory concentrations (MICs) of D-PAA/ZnONPs(SO42-) and D-PAA/ZnONPs(-OAc) were in the range of 8 mg/L-128 mg/L and 16 mg/L-128 mg/L, respectively. The nanocomposites demonstrated effective antibiofilm properties as 94.27% and 86.43%. The compounds showed good antioxidant, anti-alpha-amylase, and DNA cleavage activities. D-PAA/ZnONPs(SO42-) and D-PAA/ZnONPs(-OAc) nanosystems reduced cell viability and promoted cell death of primary murine spleen cells at concentrations higher than those that proved to be antibacterial indicating the presence of therapeutic window. D-PAA/ZnONPs(SO42-) and D-PAA/ZnONPs(-OAc) nanosystems show antioxidant, antidiabetic, DNA cleavage, antimicrobial, and antibiofilm activity against the background of good biocompatibility suggesting the presence of therapeutic potential, which should be further investigated in vivo.