Yazar "Merabet, Boualem" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Investigating a Pb-free n-i-p perovskite solar cell with BFCO absorber using SCAPS-1D(Elsevier GmbH, 2024) Mahammedi, Nassim Ahmed; Benameur, Afif; Gueffaf, Hamza; Merabet, Boualem; Ozkendir, Osman Murat; Sato, Shin-IchiroIn recent years, perovskite solar cells (PSCs) have gained significant attention as highly efficient photovoltaic (PV) devices. Despite achieving record levels of power conversion efficiency (PCE), the commercialization of Pb-based PSCs has been hindered by factors such as lead toxicity and stability. As a potential alternative, Pb-free Bi-based all-inorganic PSCs show promising efficiency. In this study, we utilized the Solar Cell Capacitance Simulator (SCAPS-1D) to optimize a Bi2FeCrO6-based (BFCO) PSC and analyzed the impact of absorber thickness, doping concentration, and external parameters on its PV performance. We have found that an optimized n-i-p architecture with an absorber thickness of 150 nm yielded a maximum PCE of 7% at ambient temperature (with open-circuit voltage, short-circuit current density, and fill factor of 1.12 V, 12 mA/cm2, and 53.7%, respectively). Furthermore, we found that decreasing the defects density Nt of the BFCO layer below 1013 cm−3 could increase the PCE to above 10%. Our findings also revealed that the temperature had a negative effect on the solar cell, and the optimum conditions were at ambient 300 K. These results are encouraging for advancing Pb-free PSCs and enhancing their design and integration into tandem SCs. © 2024 The AuthorsÖğe Nanostructured AlGaAsSb Materials for Thermophotovoltaic Solar Cells Applications(Mdpi, 2022) Bensenouci, Djamel; Merabet, Boualem; Ozkendir, Osman M.; Maleque, Md A.Thermophotovoltaic conversion using heat to generate electricity in photovoltaic cells based on the detraction of thermal radiation suffers from many engineering challenges. The focus of this paper is to study the nanostructure of AlGaAsSb for thermophotovoltaic energy conversion using lattice-matched heterostructures of GaSb-based materials in order to overcome the current challenges. The XAFS spectroscopy technique was used to analyze electronic structures and optical properties of GaSb, (Al, In) GaSbAs. The XAFS spectroscopy analysis showed a powerful decay at peak intensity that reveals to be related to a loss in Sb amount and light As atoms replaced in Sb atoms by 25%. Moreover, it was found that Al/In doped samples have highly symmetric data features (same atomic species substitution). The narrow direct bandgap energy, E-g of Al0.125Ga0.875Sb0.75As0.25 material raised (0.4-0.6 eV) compared to conventional photovoltaic cell bandgap energy (which is generally less than 0.4 eV) with weak absorption coefficients. The thermoelectric properties of AlGaAsSb computed via Botlztrap code showed that the electrons made up the majority of the charge carriers in AlGaAsSb. This nanostructure material exhibited a higher and acceptable figure of merit and demonstrated a promising thermoelectric material for solar thermophotovoltaic applications.