Yazar "Mantici, Sedat" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Improving the performance of a heat pipe evacuated solar water collector using a magnetic NiFe2O4/water nanofluid(Elsevier, 2023) Tuncer, Azim Dogus; Aytac, Ipek; Variyenli, Halil Ibrahim; Khanlari, Ataollah; Mantici, Sedat; Kararti, AlimIn the recent years, heat pipe evacuated tube solar collectors (HP-ETSCs) are widely utilized due to their easy maintenance and high efficiency. However, increasing the performance of available systems is an important issue that investigated in many studies. The main goal of this study is improving the thermal performance of a HPETSC by replacing the working fluid of the system with magnetic nanofluid. In this context, magnetic type NiFe2O4/water nanofluid has been utilized as working fluid in a HP-ETSC to improve the overall performance of the system. Accordingly, NiFe2O4 nanoparticles has been mixed with distilled water at the ratio of 2 wt% in order to obtain magnetic nanofluid. The performance tests have been performed at various water flow rates (0.016 kg/ s, 0.033 kg/s, and 0.050 kg/s) using distilled water and NiFe2O4/water magnetic nanofluid. The general outcomes of this work indicated positive results of using NiFe2O4/water magnetic nanofluid on the efficiency of the HP-ETSC. Utilizing NiFe2O4/water nanofluid in the HP-ETSC as working fluid averagely increased the thermal performance as 37.72%, 39.59% and 44.96% at flow rates of 0.016 kg/s, 0.033 kg/s and 0.050 kg/s, respectively. In addition, using NiFe2O4/water magnetic nanofluid in the HP-ETSC averagely increased the exergy efficiency as 60.59%, 55.61%, 59.61% at flow rates of 0.016, 0.033 and 0.050 kg/s, respectively.Öğe Investigating the effects of using MgO-CuO/water hybrid nanofluid in an evacuated solar water collector: A comprehensive survey(Elsevier, 2023) Aytac, Ipek; Tuncer, Azim Dogus; Khanlari, Ataollah; Variyenli, Halil Ibrahim; Mantici, Sedat; Gungor, Levent; Unvar, SinanIn thy. work, the effects of utilizing Mg0-CuO, water nanofluid on the energetic t nd exergetic performances of a heat pipe evacut ted ;olar water collector have been analyzed experimentally. In this regard, two identical heat pipe evacuated sola, water collectors have been installed. In the first system, deionized water has been utilized. In the second collector, newly prepared nanofluid have been used and both collectors have been tested under the same climatic conditions at three flow rates containing 0.016, 0.033 and 0.050 kg/s. According to the experi mentally obtained outcomes, mean theimal efficiencies of the system using deionized water were obtained between 49.62 and 56.18 %. Also, average [hernial efficiencies of the system with Mg0-010/water as working fluid were obtained between 69.89 and 77.21 %. Average sustainability index values were attained in the range of 1.0271-1.0676 for both investigated systems. moreover, utilizing hybrid nanofluid in the system reduced the payback period between 25.14 and 27.74 %. The yearly ..7.02 savings for the system with and without nanofluid were attained between 0.307-0.343 and 0.217-0.251 ton/year, respectively. General outcomes of this study exhibited notable effects of utilizing Mg0-CuO/water on improving the thermal performance of the heat pipe evacuated solar water collector.