Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Butun, Ertan" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Polyp Segmentation in Colonoscopy Images using U-Net and Cyclic Learning Rate
    (Ieee, 2022) Bulut, Betul; Butun, Ertan; Kaya, Mehmet
    Colonoscopy is an important procedure in the diagnosis of colorectal cancer. The use of computer aided systems has become important to support clinicians performing colonoscopy and to prevent polyps from escaping the clinician's attention. Image segmentation studies using deep learning achieves successful results and can play a crucial role on diagnosis procedure of colorectal cancer. We trained Unet architecture for polyp segmentation and determined the learning rate, one of the most important training parameters, using Cyclic Learning Rate policy. The results show that the success rate is increased in the segmentation task performed Unet with Cyclic Learning Rate policy. In this study, we have contributed to more accurate detection of polyp diagnosis, which can be a precursor to cancer, by using the UNET architecture with an effective learning rate strategy.

| Tarsus Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Tarsus Üniversitesi, Mersin, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim