Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Benim, Ali Cemal" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Heat and Flow Characteristics of Aerofoil-Shaped Fins on a Curved Target Surface in a Confined Channel for an Impinging Jet Array
    (Mdpi, 2024) Yalcinkaya, Orhan; Durmaz, Ufuk; Tepe, Ahmet Umit; Benim, Ali Cemal; Uysal, Unal
    The main purpose of this investigation was to explore the heat transfer and flow characteristics of aero-foil-shaped fins combined with extended jet holes, specifically focusing on their feasibility in cooling turbine blades. In this study, a comprehensive investigation was carried out by applying impinging jet array cooling (IJAC) on a semi-circular curved surface, which was roughened using aerofoil-shaped fins. Numerical computations were conducted under three different Reynolds numbers (Re) ranging from 5000 to 25,000, while nozzle-to-target surface spacings (S/d) ranged from 0.5 to 8.0. Furthermore, an assessment was made of the impact of different fin arrangements, single-row (L1), double-row (L2), and triple-row (L3), on convective heat transfer. Detailed examinations were performed on area-averaged and local Nusselt (Nu) numbers, flow properties, and the thermal performance criterion (TPC) on finned and smooth target surfaces. The study's results revealed that the use of aerofoil-shaped fins and the reduction in S/d, along with surface roughening, led to significant increases in the local and area-averaged Nu numbers compared to the conventional IJAC scheme. The most notable heat transfer enhancement was observed at S/d = 0.5 utilizing extended jets and the surface design incorporating aerofoil-shaped fins. Under these specific conditions, the maximum heat transfer enhancement reached 52.81%. Moreover, the investigation also demonstrated that the highest TPC on the finned surface was achieved when S/d = 2.0 for L2 at Re = 25,000, resulting in a TPC value of 1.12. Furthermore, reducing S/d and mounting aerofoil-shaped fins on the surface yielded a more uniform heat transfer distribution on the relevant surface than IJAC with a smooth surface, ensuring a relatively more uniform heat transfer distribution to minimize the risk of localized overheating.
  • [ X ]
    Öğe
    Numerical Analysis of Roughened Target Surface for Enhancing Jet Impingement Cooling
    (Springer International Publishing Ag, 2024) Yalcinkaya, Orhan; Durmaz, Ufuk; Tepe, Ahmet Umit; Benim, Ali Cemal; Uysal, Unal
    Roughening on a surface is crucial in heat transfer, primarily enhanced by the increased interaction between the fluid and the surface. Considering this, a thorough study was conducted to explore impinging jet array cooling (IJAC) applied to a semicircular curved surface, enhanced with aerofoil-shaped fins. Analyses were conducted under different Reynolds numbers (Re), fin arrangements, and nozzle-to-target surface spacings (S/d). Extensive analyses were conducted for both roughened and smooth target surfaces. The roughened surface and extending the nozzles to the surface increased the Nu numbers relative to the conventional IJAC scheme. The obtained heat transfer improvement was about 52.81%. In addition, the heat transfer distribution on the surface has become more homogeneous. The results of the study showed that a roughened target surface with elongated jets has significant potential for internal cooling.

| Tarsus Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Tarsus Üniversitesi, Mersin, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim