Yazar "Arslan, Tayfun" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Nuclear imaging potential and in vitro photodynamic activity of Boron subphthalocyanine on colon carcinoma cells(Elsevier, 2020) Yurt, Fatma; Arslan, Tayfun; Biyiklioglu, Zekeriya; Tuncel, Ayca; Ozel, Derya; Ocakoglu, KasimPhotodynamic therapy (PDT) has been a promising clinical agent in various types of cancer in recent years. In this study, in vitro nuclear imaging and PDT potential of Es-SubPc (Boron subphthalocyanine) were evaluated in colon adenocarcinoma cell line (HT-29) and human healthy lung fibroblast cell line (WI-38). For this purpose, the Es-SubPc was labeled with I-131 using the iodogen method under the optimum conditions resulting in labeled with high yield (98.9 +/- 1.2%). In addition, the uptake rate of I-131-Es-SubPc was determined in HT-29 and WI-38 cell lines. In comparison to the healthy cell line, the uptake of 131I-Es-SubPc was found to be 2-fold higher in the HT-29 cell line. For PDT studies, both cells were exposed to white light at 30-90 J/cm(2) in the presence of Es-SubPc. The results showed that Es-SubPc was a good PDT agent likely to be used in HT-29 cell line. As a result, Es-SubPc can be promising nuclear imaging and PDT agent for colon carcinoma.Öğe Synthesis and antimicrobial photodynamic activities of axially {4-[(1E)-3-oxo-3-(2-thienyl)prop-1-en-1-yl]phenoxy} groups substituted silicon phthalocyanine, subphthalocyanine on Gram-positive and Gram-negative bacteria(Elsevier Sci Ltd, 2019) Biyiklioglu, Zekeriya; Ozturk, Ismail; Arslan, Tayfun; Tuncel, Ayca; Ocakoglu, Kasim; Hosgor-Limoncu, Mine; Yurt, FatmaToday, the problem of antimicrobial resistance is the most important cause of morbidity and mortality in the treatment of infectious diseases worldwide. Therefore, alternative treatment strategies are important for controlling infectious diseases. In the basic principle of antimicrobial photodynamic therapy (aPDT), when harmless light at the appropriate wavelength absorbed by the photosensitizer, undergoes a transition from a ground state to a triplet state. The triplet state photosensitizer can interact with enzym and substrate molecules to produce free radicals and radical ions, or with molecular oxygen resulting in the generation of singlet oxygen which leads to cell cytotoxicity of the microorganism. For this purpose, axially {4-[(1E)-3-oxo-3-(2-thienyl) prop-1-en-1-yl] phenoxy} group substituted silicon phthalocyanine (Es-SiPc) and subphthalocyanine (Es-SubPc) were synthesized by reaction of SiPcCl2, SubPcCl with (2E)-3-(4-hydroxyphenyl)-1-(2-thienyl)prop-2-en-1-one in the presence of NaH in toluene. The new Es-SiPc and Es-SubPc were characterized by standard spectroscopy methods. The effects of aPDT in the presence of phthalocyanines were investigated against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) strains. Also, singlet oxygen generation of Es-SiPc and Es-SubPc were investigated. Our results suggest that the aPDT in the presence of newly synthesized Es-SiPc and Es-SubPc has promising antibacterial effects on Gram-positive and Gram-negative bacteria.