Yazar "Ansari, Mohammad Javed" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Exploring the Potential and Properties of Lotus (Nelumbo nucifera G.) Starches in Comparison With Conventional Starches for Food and Non-Food Applications(John Wiley and Sons Inc, 2025) Chandak, Ankita; Dhull, Sanju Bala; Chawla, Prince; Alarfaj, Abdullah A.; Alharbi, Sulaiman Ali; Ansari, Mohammad Javed; Rose, Pawan KumarIn the present study, a comparative characterization of starch isolated from lotus seeds and lotus rhizomes was compared with mung bean starch (MBS) and potato starch (PS). The characterization of isolated starches was done based on physicochemical, pasting, morphological, structural, thermal, and rheological properties. Amylose content (AC) was observed the highest for lotus seed starch (LS) while it was the lowest for lotus rhizome starch (LRS). At 90°C, the swelling power was observed the highest for PS, that is, 26.86 g/g whereas it was the lowest for MBS, that is, 12.75 g/g. MBS starch showed the highest solubility (20.7%). The scanning electron micrographs of starches showed granules varying in shape and size from round to irregular, oval to elliptical shapes, and small to large sizes. The x-ray diffraction polymorph of LRS, LS, and MBS demonstrated A-type, whereas PS exhibited B-type. Peak, trough, and breakdown viscosities were observed to be the highest for PS. PS had the lowest pasting temperature, while the highest was observed for LS. MBS and PS showed higher transition temperatures than LS and LRS. Therefore, MBS and PS can be exploited further for applications involving high processing temperatures. The enthalpy of gelatinization is highest for MBS and the lowest for LS. Frequency sweep measurement of starch pastes showed G′ and G″ values varying between 216 - 2749 Pa and 86.6–228.2 Pa, respectively. This study indicated that starches of lotus have good AC, small granular size, and have potential to promote the development of products in food and non-food industries. Overall, the present finding will encourage the utilization of starches extracted from the seed and rhizome of lotus for food and non-food industries and potentially guide future studies on starch modifications and novel utilization. © 2025 Wiley-VCH GmbH.Öğe Functionality modulation of starch from lotus rhizome using single and dual physical modification(Elsevier, 2024) Dhull, Sanju Bala; Antika, Chandak; Gökşen, Gülden; Chawla, Prince; Al Obaid, Sami; Ansari, Mohammad JavedThe effects of ultrasonication (US) assisted by pre- and post-treatment of heat-moisture treatment (HMT) on physicochemical, rheological, pasting, digestive, and thermal properties of lotus rhizome (LR) starch were investigated in this study. All treatments decreased the swelling power, amylose content, and peak viscosity except for the ultrasonicated sample when compared with native LR starch. All treatments showed similar diffraction patterns with different intensities. FTIR spectra characteristic peaks did not emerge or disappear after single and dual modifications. Storage modulus (G?) is greater than loss modulus (G?) for all LR starch gel samples demonstrating their elastic character. Moreover, ?Hgel (253.1–303.7 J/g) increased in all treatments. Dual modification (HMT & US) significantly enhanced resistant starch and reduced SDS in LR starches. These results could be beneficial for promoting ultrasound processing for potential uses in the food industry and starch production.Öğe Lotus (Nelumbo nucifera G.) seed starch: Understanding the impact of physical modification sequence (ultrasonication and HMT) on properties and in vitro digestibility(Elsevier, 2024) Chandak, Ankita; Dhull, Sanju Bala; Chawla, Prince; Goksen, Gulden; Rose, Pawan Kumar; Al Obaid, Sami; Ansari, Mohammad JavedNative lotus ( Nelumbo nucifera G.) seed starch (LSS) was single- and dual-modified by heat-moisture treatment (HMT), ultrasonication (US), HMT followed by the US (HMT-US), and the US followed by HMT (US-HMT). The modified lotus seed starch (LSS) was evaluated for its physicochemical, pasting, thermal, and rheological properties and in vitro digestibility. All treatments decreased the swelling power (10.52-14.0 g/g), solubility (12.20-15.95 %), and amylose content (23.71-25.67 %) except for ultrasonication (17.67 g/g, 17.90 %, 29.09 %, respectively) when compared with native LSS (15.05 g/g, 16.12 %, 27.12 %, respectively). According to the rheological study, G ' ' (1665-4004 Pa) was greater than G '' '' (119-308 Pa) for all LSS gel samples demonstrating their elastic character. Moreover, gelatinization enthalpy (17.56-16.05 J/g) increased in all treatments compared to native LSS (15.38 J/g). Ultrasonication treatment improved the thermal stability of LSS. The digestibility results showed that dual modification using HMT and US significantly enhanced resistant starch (RS) and reduced slowly digestible starch (SDS) in LSS. Cracks were observed on the surface of the modified LSS granules. Peak viscosity decreased in all modified starches except for ultrasonication, suggesting their resistance to shear-thinning during cooking, making them ideal weaning food components. The results obtained after different modifications in this study could be a useful ready reference to select appropriate modification treatments to produce modified LSS with desired properties depending on their end-use.