Yazar "Algul, Oztekin" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe N-(benzazol-2-yl)-2-substituted phenylacetamide derivatives: Design, synthesis and biological evaluation against MCF7 breast cancer cell line(Elsevier, 2023) Zoatier, Bayan; Yildirim, Metin; Alagoz, Mehmet Abdullah; Yetkin, Derya; Turkmenoglu, Burcin; Burmaoglu, Serdar; Algul, OztekinThis work describes the straightforward and efficient one-pot synthesis of a new library of N-(benzazol-2-yl)-2-substituted phenylacetamide derivatives (19-27). Using the MTT assay, these compounds were evaluated for their in vitro anticancer activity against the MCF7 human breast cancer cell line, and the results were compared to the standard doxorubicin. The majority of compounds exhibited an inhibitory effect against the cancer cell line, with compounds 19, 22, and 26 exhibiting exceptional cytotoxicity against MCF7 cells. Using flow cytometry, the most potent compound 19 on the induction of apoptosis in the breast cancer cell line was determined. Compound 19 induced G1-phase cell cycle arrest followed by apoptotic cell death. In silico analyses of potent compounds 19, 22, and 26 were conducted to investigate their interactions with Human DNA topoisomerase II. The energy calculations were found to be in excel-lent agreement with the calculated IC50 values. In addition, drug similarity parameter values for the three active compounds were determined using in silico ADME prediction studies. Considering all of these re-sults, it appears that these N-(benzazol-2-yl)-2-substituted phenylacetamide derivatives may be effective anticancer agents. This work may possibly generate new concepts for the enhancement of inhibitors of human DNA topoisomerase II for breast cancer treatment.(c) 2023 Elsevier B.V. All rights reserved.Öğe Synthesis and evaluation of di-heterocyclic benzazole compounds as potential antibacterial and anti-biofilm agents against Staphylococcus aureus(Wiley, 2024) Aktekin, Mine Buga; Oksuz, Zehra; Turkmenoglu, Burcin; Istifli, Erman Salih; Kuzucu, Mehmet; Algul, OztekinCumulative escalation in antibiotic-resistant pathogens necessitates the quest for novel antimicrobial agents, as current options continue to diminish bacterial resistance. Herein, we report the synthesis of di-heterocyclic benzazole structures (12-19) and their in vitro evaluation for some biological activities. Compounds 16 and 17 demonstrated potent antibacterial activity (MIC = 7.81 mu g/mL) against Staphylococcus aureus, along with significant anti-biofilm activity. Noteworthy is the capability of Compound 17 to inhibit biofilm formation by at least 50% at sub-MIC (3.90 mu g/mL) concentration. Furthermore, both compounds exhibited the potential to inhibit preformed biofilm by at least 50% at the MIC concentration (7.81 mu g/mL). Additionally, Compounds 16 and 17 were examined for cytotoxic effects in HFF-1 cells, using the MTT method, and screened for binding interactions within the active site of S. aureus DNA gyrase using in silico molecular docking technique, employing AutoDock 4.2.6 and Schr & ouml;dinger Glidse programs. Overall, our findings highlight Compounds 16 and 17 as promising scaffolds warranting further optimization for the development of effective antibacterial and anti-biofilm agents.